新颖的电流临界导通的功率因数校正芯片的研究

最新更新时间:2010-12-23来源: 电源技术应用关键字:零功率检测  跨导误差放大器  功率因数校正 手机看文章 扫描二维码
随时随地手机看文章

0    引言

    随着电力质量标准的日益严格,功率因数校正(PFC)技术已成为电力电子领域中的研究热点。随着功率因数校正技术的发展,功率因数校正控制芯片也有了很大的发展。根据电路的工作模式,功率因数校正控制芯片可以分成3类:

    1)电流断续的功率因数校正控制芯片;

    2)电流临界连续的功率因数校正控制芯片;

    3)电流连续的功率因数校正控制芯片。

    近几年来,这些芯片得到了很大的发展。

    本文介绍了一种新颖的电流临界连续的功率因数校正控制芯片UCC38051。它具有结构简单和功能强大的优点。它不仅改善了启动时输出电源过冲,而且有欠压保护功能;同时它通过提高误差放大器的输出变化率来改善它的动态响应能力;另外,它还具有开环保护功能。本文以这种新颖的电流临界导通(DCM boundary)功率因数校正芯片制作了一个100W的PFC电路原理样机,对芯片进行了分析,最后给出了实验波形。

1    芯片介绍

    UCC38051采用8脚SOP封装,引脚配置如图1所示,表1给出了引脚功能。

图1    UCC38051引脚排列

表1    UCC38051引脚功能表

引脚 名称 功能
1 VO_SNS 反馈
2 COMP 补偿
3 MULTIN 电压基准
4 CS 采样电流
5 ZCD 零电流检测
6 GND 接地
7 DRV 驱动输出
8 VCC 电源供电

    UCC38051是一种峰值电流模式的控制芯片,它可以应用在电流临界导通的功率因数校正电路中。因为UCC38051内部使用了一个零功率检测比较器,所以可以抑制电路启动时输出电压的过冲,这样电路中的元器件就可以得到保护,它们的寿命就可以延长。

    UCC38051具有低的启动电流和工作电流,输出过压保护,输入欠压保护和反馈开路保护功能。

2    芯片的分析

    图2给出了这种新颖的DCM bounday PFC控制芯片的内部框架图,下面将进行分析,阐述它的工作原理。

图2    UCC38051内部框图

2.1    轻载特性的改善

    对于一般的功率因数校正电路来说,轻载时电路的损耗比较大。降低轻载时功率因数校正电路的损耗已经成为现在的研究热点。而芯片UCC38051较好地解决了这个问题。

    图3中给出了这种降低轻载时电路损耗的原理图。如果功率因数校正电路在轻载时其工作频率比较高时,那么它的损耗比较大,因此,在轻载时必须减少电路的开关次数,来降低电路的损耗。UCC38051中有一个零功率检测比较器,当输出功率比较低时,这个比较器就会工作。此时它会使电路工作在间隙模式下,这样电路的损耗就会降低。

图3    零功率检测比较器

    芯片UCC38051脚2(COMP)的电压,在输入功率等于零和输出电压过压的工作条件下,会低于它正常工作时的电压。当它低于零功率检测比较器的基准电压时,比较器就会工作,这样零功率检测比较器就会闭锁驱动信号,使输出驱动信号为零。因此,有了这个零功率检测比较器就会防止启动时输出电压过冲。另外,在动态过程中输出电压也会比较高,脚2的电压也会比正常工作时低,这样也可能封锁驱动信号,但是,UCC38051内部有一个跨导误差放大器,当电路工作在这个状态时,它会使脚2输出电压不会低于零功率检测比较器的基准电压,从而不会封锁驱动信号。

2.2    动态性能调节和欠压保护

    对于功率因数校正电路来说,动态性能的好坏和启动电流的大小直接影响电路的寿命。因此,在设计功率因数校正电路时,必须考虑这两个问题。图4给出了解决动态响应和启动电流的原理图。

图4    动态调节和欠压保护原理图

    当功率因数校正电路的输出功率突然变化时,它的输出电压就会引起很大的变化。例如,当负载突然变轻时,它的输出电压会陡然增加很多;当负载突然加重时,它的输出电压会突然降低很多。如果电路以这样的方式工作,它的动态性能就比较差,会增加后级电路的负担,影响电路的寿命。而在芯片UCC38051内部有一个跨导型电压误差放大器,当功率因数校正电路负载突然变化时,电路的反馈电压信号通过脚1(VO_SNS)送给跨导型电压误差放大器,使跨导型电压误差放大器工作,使电路的增益非线性变化,导致电路增益突然变化很多,这样就可以迫使电路的输出电压的变化不能很大。因此,有了这个跨导型电压误差放大器,就使电路的输出电压不会变化很大,这样就可以改善电路的动态性能。同时,有了这个跨导型误差放大器,就改善了高输入电压时的功率因数和减小了输入电流总的谐波含量。

    欠压保护对于功率因数校正电路来说也十分重要。UCC38051芯片通过一个滞环比较器实现欠压保护功能。它是通过脚1的反馈电压信号给欠压保护的滞环比较器一个电压信号,当输出电压比较低时,电路中的反馈电压也比较低,当反馈电压低于滞环的转换电压时,这个滞环比较器会封锁驱动信号,从而就实现了欠压保护功能。

3    实验结果

    上述功率因数校正电路的主电路如图5所示,其主要参数如下:

图5    主电路图

    输入电压    AC 90~265V;

    输入电压频率    47~63Hz;

    输出电压    400V;

    最大输出功率    100W;

    最大开关频率    fmax=100kHz。

    实验结果证明了,这种新颖的电流临界导通的功率因数校正控制芯片,很好地解决了电路启动时输出电压过冲的问题;动态性能也得到了改善;同时,改善了高输入电压时的功率因数和降低了输入电流总的谐波含量。图6和图7分别给出了输入电压115V,输出功率满载时的输入电流波形和输入电流谐波含量图。图8和图9分别给出了输入电压230V,输出功率满载时的输入电流波形和输入电流谐波含量图。图10给出了启动时输出电压的波形。图11和图12分别给出了输出功率从满载到空载和从空载到满载时的输出电压波形。

图6    输入电流波形(Vin=115V,Po=100W)

图7    输入电流谐波含量(Vin=115V,Po=100W)

图8    输入电流波形(Vin=230V,Po=100W)

图9    输入电流谐波含量(Vin=230V,Po=100W)

图10    启动时的输出电压波形

图11    输出电压(从满载到空载)波形

图12    输出电压(从空载到满载)波形

4    结语

    以UCC38051为核心设计的DCM boundary功率因数校正电路,提高了高输入电压时的功率因数,减小了总的谐波含量,这样在轻载时就降低了对电网的污染;同时,它改善了在输出功率变化时的动态性能;有效地抑制了启动时输出电压的过冲和降低了启动时的输入电流。因此,这种控制芯片可以应用于对动态性能要求比较高、启动电流要求比较低、功率因数要求高、谐波含量要求低和启动时要求对输出电压过冲进行保护的场合。

关键字:零功率检测  跨导误差放大器  功率因数校正 编辑:金海 引用地址:新颖的电流临界导通的功率因数校正芯片的研究

上一篇:优化高电压IGBT造就高效率太阳能逆变器
下一篇:一种简单的IGBT驱动和过流保护电路

推荐阅读最新更新时间:2023-10-18 15:05

反激式功率因数校正电路的电磁兼容设计
摘要:通过反激式功率因数校正电路说明了单级功率因数校正电路中的电磁兼容问题,分析了单级功率因数校正电路中骚扰的产生机理,给出了电磁兼容的设计,最后提出了其他几种减少电磁干扰的方法。 关键词:电磁干扰;电磁兼容;功率因数校正 引言 电磁兼容(EMC)是指电子设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。随着电子产品越来越多地采用低功耗、高速度、高集成度的LSI电路,而使得这些装置比以往任何时候更容易受到电磁干扰的威胁。而与此同时,大功率家电及办公自动化设备的增多,以及移动通信、无线寻呼的广泛应用等,又大大增加了电磁骚扰源。这些变化迫使人们把电磁兼容作为重要的技术问题加以关注。特别是欧共
[应用]
如何以单级方式驱动带功率因数校正的LED
  PFC-SEPIC LED 驱动器   PFC 代表“功率因数校正”,SEPIC 代表“单端初级电感转换器”,当然,LED 代表“发光二极管”,在一个转换器中整合这三种特性,可为 LED 照明提供具有良好功率因数的高效率单级解决方案。图 1 是 PFC-SEPIC LED 驱动器的原理图。      图 1. PFC-SEPIC 转换器可使用传统 PFC 升压控制器控制。   SEPIC 的一个重要特征是缺少隔离功能。这样该结构就只能用在不需要安全隔离的应用中。想一下完全密封的应用,用户不能访问通电部件,例如路灯和高顶棚灯。   大多数 PFC 转换器都使用升压拓扑,需要输出电压高于峰值线路电压。SEPIC 拓扑允许输出
[电源管理]
如何以单级方式驱动带<font color='red'>功率因数校正</font>的LED
UC3854A/UC3854B控制的有源功率因数校正电路
UC3854A/UC3854B控制的有源功率因数校正电路 为了提高系统的功率因数,整流环节不能采用二极管整流,采用了UC3854A/B控制芯片组成功率因数校正电路。UC3854A/B是Unitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进,其特点是采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%。图1是由UC3854A/B控制的有源功率因数校正电路。 UC3854A/UC3854B控制的有源功率因数校正电路 该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,Cs,S等元器件构成B
[电源管理]
UC3854A/UC3854B控制的有源<font color='red'>功率因数校正</font>电路
功率因数校正器的辅助电路设计
1 引言   电力电子装置已成为电网最主要的谐波源之一。抑制电力电子装置产生谐波的方法主要有两种,一是被动方式,即采用无源滤波或有源滤波电路来旁路或滤除谐波;另一种是主动式的方法,即设计新一代高性能整流器,它具有输入电流为正弦波、谐波含量低、功率因数高的特点,即具有功率因数校正功能。在功率因数校正器中辅助电路对其安全正常工作至关重要,辅助电路能够防止从电网传入电磁噪声,抑制装置产生的电磁噪声返回电网,抑制过大的起动冲击电流,消除浪涌噪声干扰等。   2 主要技术指标   该功率因数校正器的主要技术指标为:   1) 输入:单相AC220V±20%,即176V~264V,频率为50HZ±5%;   2)
[电源管理]
<font color='red'>功率因数校正</font>器的辅助电路设计
贴士:基于功率因数校正的离线式开关电源设计
离线式 开关电源 通常应用整流桥和输入滤波电容从输入吸收能量,大电容在接近交流输入峰值处充电以给为逆变提供能量的未经调整的BUS提供能量。电容的容量必须足够大,当整流后半期内线电压低于BUS电压时,仅由它向后续提供能量。 不幸的是,有输入滤波电容会导致输入电流波形不在是正弦,而是一很窄的峰值很高的电流波形,输入功率仅有0.5"0.65,严重的畸变导致电网污染。线电流有效值可达两倍相同正弦电流有效值。120V,15A的线路甚至不能在不导致电路断路器动作时提供1Kwde输入功率。而高功率因数校正却能够提供几乎是其两倍的功率,并且损耗很低,因此在许多领域内,高功率因数校正器成为一需求。 本文所述的高PFC放置于输入整流和BUS电容之间,
[电源管理]
功率因数校正在离线式电源中的应用
离线式 开关电源 通常应用整流桥和输入滤波 电容 从输入吸收能量,大电容在接近交流输入峰值处充电以给为逆变提供能量的未经调整的 BUS 提供能量。电容的容量必须足够大,当整流后半期内线 电压 低于 BUS 电压时,仅由它向后续提供能量。不幸的是,有输入滤波电容会导致输入 电流 波形不在是正弦,而是一很窄的峰值很高的电流波形,输入功率仅有 0.5~0.65 ,严重的畸变导致电网污染。线电流有效值可达两倍相同正弦电流有效值。 120V , 15A 的线路甚至不能在不导致 电路 断路器动作时提供 1Kwde 输入功率。而高功率因数校正却能够提供几乎是其两倍的功率,并且损耗很低,因此在许多领域内,高功率因数校正器成为一
[电源管理]
多相交叉升压电路及其在有源功率因数校正技术
摘要:提出一种新的,已获专利的多相交叉升压电路拓扑(专利申请号No.00257426&00130365)。使用这种多相电路拓扑,可将电力电子产品的有源功率因数校正的输出功率扩展至2~4kW,以满足IEC1000-3-2标准的规定。多相交叉升压式的有源功率因数校正技术具有输出功率大,电路简单,成本低等优点。对双端推挽式升压电路的主功率级和控制器做了分析,并给出了输出功率为2kW样机的实验结果。 关键词:多相交叉;升压电路;有源功率因数校正;双端推挽式升压电路   1 引言 在脉宽调制技术上发展起来的高频变换技术大大提高了电能的变换效率;缩小了电力电子产品的体积;减轻了其重量;从而降低了能耗;节省了材料。但
[电源管理]
多相交叉升压电路及其在有源<font color='red'>功率因数校正</font>技术
功率因数低空载损耗AC/DC电源的研究
TENG Fang-hua, ZHANG Zhong-chao Abstract:A 90 W low stand-by loss AC/DC converter with universal input voltage is introduced.The converter consists of two-stages approach: a front-end PFC pre-regulator based on L6561 PFC controller and back-end DC/DC converter in flyback topology based on L5991A PWM controller. The
[电源管理]
高<font color='red'>功率</font>因数低空载损耗AC/DC电源的研究
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved