高效小型化开关电源设计方案

最新更新时间:2011-09-20来源: 互联网关键字:高效小型  开关电源 手机看文章 扫描二维码
随时随地手机看文章

1 引言

开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。随着电源技术的发展,低电压,大电流的开关电源因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激反激式有着电路拓扑简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。跟反激式相比,正激式变换器变压器铜损较低,同时,正激式电路副边纹波电压电流衰减比反激式明显,因此,一般认为正激式变换器适用在低压,大电流,功率较大的场合。

2 基本技术

2.1 有源钳位技术

正激DC/DC变换器其固有缺点是功率晶体管截止期间高频变压器必须磁复位。以防变压器铁心饱和,因此必须采用专门的磁复位电路。通常采用的复位方式有三种,即传统的附加绕组法、RCD钳位法、有源钳位法。三种方法各有优缺点:磁复位绕组法正激变换器的优点是技术成熟可靠,磁化能量可无损地回馈到直流电路中去,可是附加的磁复位绕组使变压器结构复杂化,变压器漏感引起的关断电压尖峰需要RC缓冲电路来抑制,占空比D<0.5,功率开关管承受的电压应力与输入电源电压成正比。RCD钳位正激变换器的优点是磁复位电路简单,占空比D可以大于0.5,功率开关管承受电压应力较低,但大部分磁化能量消耗在钳位电阻中,因此它一般适用于变换效率不高且价廉的电源变换场合。有源钳位技术是三种技术中效率最高的技术,它的电路图如图1所示,工作原理如图2所示。在 DT时段之前,开关管S1导通,激磁电流iM为负,即从Cr通过S1流向Tr,在DT阶段,开关管S的驱动脉冲ugs使其导通,同时ugs1=0,使S1 关断,在Vin的作用下,激磁电流由负变正,原边功率通过变压器传到副边,给输出端电感L充电;在(1-D)T时段,ugs=0,S关断,ugs1到来使 S1导通,iM通过S1的反并二极管向Cr充电,在Cr和Tr漏感构成的谐振电路的作用下,iM由正变负,变压器反向激磁。从以上分析中可以看出:有源钳位正激变换器变压器铁心工作在双向对称磁化状态,提高了铁心利用率,钳位电容的稳态电压随开关占空比而自动调节,因而占空比可大于50%;Vo一定时,主开关、辅助开关应力随Vin的变化不大;所以,在占空比和开关应力允许的范围内,能够适应较大输入电压变化范围的情况。不足之处是增加了一个管子,使得电路变得复杂。

图1  有源钳位同步整流正激式电路图

图2  有源钳位电路工作原理图

2.2 同步整流技术

在低电压大电流功率变换器中,若采用传统的普通二极管或肖特基二极管整流由于其正向导通压降大(低压硅二极管正向压降约0.7V,肖持基二极管正向压降约 0.45V,新型低电压肖特基二极管可达0.32V),整流损耗成为变换器的主要损耗,无法满足低电压大电流开关电源高效率,小体积的需要。

MOSFET导通时的伏安特性为一线性电阻,称为通态电阻RDS,低压MOSFET新器件的通态电阻很小,如:IRL3102(20V,61A)、 IRL2203S(30V,116A)、IRL3803S(30V,100A)通态电阻分别为0.013Ω、0.007Ω和0.006Ω,它们在通过 20A电流时,通态压降不到0.3V。另外,功率MOSFET开关时间短,输入阻抗高,这些特点使得MOSFET成为低电压大电流功率变换器首选的整流器件。功率MOSFET是一种电压型控制器件,它作为整流元件时,要求控制电压与待整流电压的相位保持同步才能完成整流功能,故称为同步整流电路。图1为典型的降压型“同步”开关变换器电路(当电路中无SR时,为“普通”的降压型开关变换器电路)。

3 电路的设计

所设计的电源参数如下:输入电压为50(1±10%)V,输出电压为3.3V,电流为20A,工作频率为100kHz。

采用的主电路拓扑如图1所示。由于有源钳位采用的是FLYBACK型钳位电路,它的钳位电容电压为:

Vc=Vin

所选用的控制IC芯片为UC3844,它的最大占空比为50%,所以电容上的电压最大为Vin,电容耐压为60V以上,只要选取足够大即可保证电路能正常工作,本电路所选取的钳位电容为47μF/100V。

有源钳位管S1的驱动必须跟变压器原边的地隔离开,而且S1的驱动信号必须跟开关管S驱动信号反相,使用UCC3580可以实现两个管子的驱动,可是这个芯片并不常见,因而这里选用UC3844跟IR2110组合。UC3844出来的控制信号用来作为IR2110的低端输入,其反相信号作为IR2110的高端输入,IR2110的高端驱动通过内部自举电路来实现隔离。这样,我们就达到了驱动两个开关管的目的。

在输出整流电路中,当续流二极管(即SR的反并二极管)受正向电压导通时,应及时驱动SR导通,以减小压降和损耗。但为了避免SR与SR1同时导通,造成短路事故,必须有“死区”时间,这时仍靠二极管D导通。SR的开关瞬时要与续流二极管的通断瞬时密切配合,因此对开关速度要求很高。另外,从成本综合考虑,选用IRL3102。

变压器的设计跟一般正激式变换器变压器设计差不多,只是要考虑同步整流管的驱动。所选用的同步整流管的驱动开通电压为4V左右,电路输出电压为3.3V,输出端相当于一个降压型电路,占空比最大为0.5,所以变压器副边电压至少为6.6V。因为MOSFET的栅-源间的硅氧化层耐压有限,一旦被击穿则永久损坏,所以实际上栅-源电压最大值在20~30V之间,如电压超过20V,应该在栅极上接稳压管。

4 实验结果和波形分析

开关管S1和S的Uds波形如图3所示,RefA为S管压降波形,50V/div,RefB为S1管压降波形,50V/div。电路此时工作在Vin= 60V左右,S1和S的开关应力大概为120V,D=0.5左右。图4为变压器输出电压,也就是同步整流管SR1和SR的驱动信号,正的部分为SR的驱动信号,负的部分为SR1的驱动信号。实验所得波形和分析的波形基本吻合,只是在开关转换瞬间,电压有小尖峰,这是由电路的杂散参数引起的。该电路的工作效率经过测量大约在90%左右,基本达到设计的要求。

图3  开关管S和S1的uds波形

图4  同步整流管的驱动波形

5 结语

3.3V/20A的开关电源的设计表明,有源逆变加同步整流电路用在低压大电流的正激式电路设计中,不加PFC电路时,能够取得很高的效率。



关键字:高效小型  开关电源 编辑:冰封 引用地址:高效小型化开关电源设计方案

上一篇:MicroTCA 电源系统设计中必备的要素
下一篇:反激电源参考设计来自PI工程师的技巧与提示

推荐阅读最新更新时间:2023-10-18 15:46

一款基于IW1706的AC—DC原边反馈恒压开关电源设计
1. 驱动芯片IW1706-00介绍 IW1706是一种采用数字控制技术对建峰电流模式PWM反激式高性能的交流/直流电源控制器。此芯片中包含了直接驱动功率晶体管,工作在准谐振模式,高效率,内置保护功能等特点,同时显著减少了外围元器件数量可达到简化设计和降低材料总成本的目的。IW1706具备软启动方案,它允许快速而顺利启动与小型和大型的电容负载。IW1706消除次级反馈电路同时也具备了出色的输出特性和负载调节。它也消除环路补偿元件的需要在保持稳定的同时在所有操作条件。脉冲波形分析脉冲允许一个环响应比传统的解决方案更快,从而提高了动态负载响应。内置的功率限制功能可以优化变压器设计在通用离线应用,允许一个广泛的输入电压范围
[电源管理]
一款基于IW1706的AC—DC原边反馈恒压<font color='red'>开关电源</font>设计
工程师该如何解决开关电源的EMI问题?
随着微电子技术的高速发展,实际应用对开关电源提出更苛刻的技术要求,不仅讲究高效率、高功率密度,且为保证模块及整体系统的可靠性,会要求电磁干扰尽可能小。那么在设计或应用时如何攻克电源的EMI难题呢? 现今开关电源的控制方式采用脉冲宽度调制技术(PWM),当工作在高频通断状态时,开关管、整流二极管、变压器等高动态功率器件在快速瞬变过程中,产生较强的谐波干扰噪声和尖峰干扰噪声,并通过输入输出线、分布电容的传导、空间辐射、串扰等耦合途径影响自身电路及其它电子系统设备的正常工作。 一、电磁干扰(EMI)的综述 1、电磁干扰(EMI)危害 在电子终端设备系统应用中,电磁干扰(EMI)对系统的危害是显而易见的,主要有如下三个:
[电源管理]
工程师该如何解决<font color='red'>开关电源</font>的EMI问题?
基于明纬开关电源LED电源解决方案
1. 如何选择明纬LED电源供应器? a. 依客户系统需求与应用方式决定适合的瓦数,包含欲设计之功率安全余裕度,并考虑系统之驱动方式设计。利用明纬电源供应器「直接驱动」 LED 灯具,选择要点可参阅问题(2)与(3)。利用明纬电源供应器,搭配恒定电流源之 LED 驱动IC,以达到更精确的定电流驱动,选择要点可参阅问题(2)与(3)。 b. 确认LED电源供应器的工作环境,以选用合适之防水防尘(IP)等级,或是合适的机型结构(金属壳、塑料壳、PCB式)。 c. 是否需具备功率因子矫正(PFC)功能: 采用单级PFC架构之机型仅可使用于 LED 负载,而采双级PFC架构者则可泛用于一般负载。 d. 若系统设计采电源供应器直接驱动LE
[电源管理]
基于明纬<font color='red'>开关电源</font>LED电源解决方案
高频变压器线圈绕制介绍(开关电源驱动变压器
高频变压器线圈绕制介绍(开关电源驱动变压器)
[电源管理]
高频变压器线圈绕制介绍(<font color='red'>开关电源</font>驱动变压器
开关电源原理与设计(连载34)交流输出半桥式变压器开关电源(part1)
      根据电磁感应定律可以对变压器初级线圈N1绕组回路列出方程:       e1 = N1*dΦ/dt =Uab —— K1接通期间 (1-156)       上式中,e1为变压器初级线圈产生的电动势, Uab为电源加于变压器初级线圈N1绕组两端的电压,Uab =Ui/2 , dΦ/dt为变压器铁心中磁通的变化率。这里我们假定电容器C1或C2两端的电压在K1接通期间基本保持不变,其两端电压正好等于输入电压Ui的二分之一。       同样,可以对变压器次级线圈N2绕组回路列出方程:       e2 = N2 *dΦ/dt =(Up)—— K1接通期间 (1-157)       上式中,(Up)为开
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载34)交流输出半桥式变压器<font color='red'>开关电源</font>(part1)
自激开关电源设计的注意事项
在设计和制作开关电源时。必须注意一些常识。下面以附图所示的自激式开关电源为例加以说明。    1.一次侧和二次侧的绝缘      必须重视交流侧和二次侧的绝缘。对这一问题各国都有相应的规定。如对一次侧和二次侧的相邻印刷电路的间隔(平面距离)为3mm,一次侧和二次侧相邻元件的空间距离为5mm等,并利用变压器来作电气绝缘。   连接一次侧和二次侧的元件有三个,即图中的变压器T1、电容器C12、光耦合器IC2,它们必须满足各自的安全规格。对变压器T1,主要关注其初次级间的绝缘层。C12用于去除来自电源线的噪声,需选用交流电容器。并有足够的耐压,其容量不能过大。否则会增大泄漏电流。    2.一次侧元件不能有
[电源管理]
自激<font color='red'>开关电源</font>设计的注意事项
ADIADP1853输出20ADC-DC转换解决方案
ADI 公司的ADP1853是宽输入电压DC/DC同步降压控制器,输入电压从3.3V到12V(高达20V),电压跟踪输入,输出电压0.6V到90%VIN,通常工作在电流模式以得到更快的响应速度.最大输出电流大于25A,输出电压对温度的精度±1%,可编频率200 kHz到1.5 MHz,主要用于中间总线和POL系统,通信基站和网络,工业和仪表,医疗和保健设备.本文介绍了ADP1853主要特性,方框图,典型应用电路图,15A电流模式和25A电压模式应用电路图,以及ADP1853评估板主要特性,电路图,材料清单和PCB元件布局图.  The ADP1853 is a wide range input, dc-to-dc, synchron
[电源管理]
ADIADP1853输出20ADC-DC转换解决方案
基于DSP和CPLD的移相全桥软开关电源数字控制器
1 引言 近年来,随着大功率开关电源的发展,对控制器的要求越来越高,开关电源的数字化和智能化也将成为未来的发展方向。目前,我国的大功率开关电源多采用传统的模拟控制方式,电路复杂,可靠性差。因此,采用集成度高、集成功能强大的数字控制器设计开关电源控制器,来适应不断提高的开关电源输出可编程控制、数据通讯、智能化控制等要求。 2. 数字控制器设计 图1 控制器系统结构 本文设计的数字控制器,采用TI公司24X系列DSP控制器中的TMS320LF2407A芯片作为主控制器,主要功能模块包括:(1)DSP与可编程逻辑器件CPLD相配合实现全桥移相谐振软开关驱动(2)偏磁检测电路;(3)其他功能,如数据
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved