应用处理器专用电源设计

最新更新时间:2011-09-25来源: 互联网关键字:应用处理器  电源设计 手机看文章 扫描二维码
随时随地手机看文章
本文详细说明了 TI 推出的 TPS65024x 电源产品系列之间的不同之处,此系列电源产品是专门为 PDA、智能电话以及导航系统的应用处理器而设计的。
在为智能电话开发一款集成电路时,一个小的解决方案尺寸是最重要的设计参数。其他重要的参数包括高效率、灵活性以及外部组件的数量。但是,在导航系统中,由于较大尺寸的显示屏以及外形尺寸,因此与纯手持终端应用相比,其对空间的要求就显得不那么关键了。根据设计,由于手持终端设备、导航系统每次只能运行数个小时,因此将他们与汽车的仪表板相连,并由一个连接至汽车蓄电池的 12 V 适配器来供电是极为常见的。该适配器通常包括一个为导航系统的输入提供 5V DC 电压的预调节器。这样就可以使用一个专用电源输入或 USB 连接器进行供电。输入电压通常用于为一个锂离子电池充电。有两种不同的电池充电器概念,即具有电源通道的电池充电器和不具有电源通道的电池充电器。
图 1 不具有电源通道的充电器
图 2 具有电源通道的充电器
两者最主要的不同之处在于电池连接至负载的方法不同。对于不具有电源通道的充电器而言,电池直接连接至负载,且充电器所提供的电流在负载和电池之间进行拆分。如果应用被关闭且没有负载电流,那么充电器所提供的所有电流则全部用于为电池充电。如果应用被开启,则充电电流就会减少且部分电流将用于为应用供电。虽然这一概念非常简单,但是我们无法预测进入电池的充电电流。只有当电池和应用充电器的总输出电流为已知时,才可对进入电池的充电电流进行预测。
第二种充电器拓扑结构包含了一个所谓的电源通道。电池由一个开关与负载隔离开来,如果充电器上没有输入电压,那么开关将关闭且电池与输出连接,从而为应用供电。在与一个外部电源连接以后,电池和功率输出之间的开关将开启,且充电器输入和功率输出之间的第二个开关将被关闭。该输入电压要么被直接连接至输出,要么被预调节至高于电池电压的 100mV 左右或调节至一个稳压。第二种电路可独立为电池充电。具有电源通道的充电器提供了限制输入电流、汽车适配器电流或 USB 总线电流的选项。可以对充电电流进行单独设置。这一概念具有诸多优点:
  • 电池的充电电流不依赖于负载;
  • 精确的充电端
  • 如果是外部供电,输出电压可以与输入电压相当
于电源而言,根据所使用的充电器的类型的不同,输入电压范围也不尽相同。 最低的工作电压通常由锂离子电池的最低电压定义,其可能会低至 3.0V 标准锂离子电池的电压。最高的电压则取决于充电器,对于那些不具有电源通道的充电器而言,最高的电压与最高的电池电压相等,通常为 4.2V。由于电源通道激活,电压可能会上升至 5V 以上,因此,理想的状况是拥有一个在整个输入电压范围内都具有良好效率的电源。如果在一个电源芯片上集成了低压降线性稳压器 (LDO),这就显得至关重要了,因为其效率主要取决于旁路元件两端的电压,该电压由输入和输出电压之间的差来定义的。
对一块集成电路来说,总会存在是否要集成充电器的问题。即使能够将为一种应用供电所需的全部电路都包括到一个小型器件中,这种解决方案也存在折衷处理和缺乏灵活性的问题。从功耗和布局的角度来看,不在电源管理单元 (PMU) 中集成电池充电器的解决方案是可行的。充电器能够适应于可用输入源和更具使用灵活性的电池。可将这种充电器靠近电池或者输入连接器放置,同时可以将 PMU 靠近处理器放置来获得供电。
另外,还有一些解决方案,它们不但集成了如音频放大器和音频 CODEC 的模块,同时还集成了显示器及显示器背光电源。与充电器一样,这些附加模块也面临同样的问题。一个集成了各种模块的器件从一个用于许多不同应用的灵活解决方案转向一种用户特定器件,使得在没有损害某些参数的情况下适应于不同应用变得困难。具有限制功能的器件可在终端上提供较高的灵活性。在以下例子中,显示了一种专门用于某种应用和/或某些处理器的器件。TI 的 TPS65024x 系列电源管理单元专门优化用于处理器的输出电流能力和输出电压。当然,这种器件并不是不能被用于为其他设备供电,而是说将其专门用于处理器只需要少量的外部组件。
TPS65024x 系列电源管理单元包括三个专门用于 I/O、存储器和手持设备内核电压的降压转换器。另外,还有三个要求具有极低纹波或低电流电压轨的LDO。两个 LDO(LDO1 和 LDO2)可以提供一个 200mA 的输出电流,同时第三个 LDO(LDO3)专门用于一个电压轨 (Vdd_alive),即使在应用处理器处于睡眠模式的情况下也需要开启该电压轨。输出电流能力为 30mA,LDO3 的电源电流仅为 10uA,其将来自于处于睡眠模式下的电池的电流保持尽可能的小。
一般而言,宽范围输出电流的高效率是许多电池供电应用的关键。因此,所有设备要进行优化,以用于低静态电源电流,即未向输出提供任何电流但却仍然维持输出电压的芯片所需要的电流。对于那些长期在待机模式下工作的应用而言,这一参数至关重要。低静态电源电流不仅延长了待机时间(在应用不需要任何电源电流的情况下),而且在提到极低 DC/DC 转换器输出电流条件下的效率时这也是一个重要的参数。
DC/DC 转换器(例如:降压转换器)的效率受到三个因素的影响。在高输出电流条件下,效率主要由内部电源开关电阻决定,因此低电阻在该工作范围内非常重要。在降压转换器中,工作在固定频率脉宽调制模式 (PWM) 下时,占空比取决于输入-输出电压比。对低输出电压而言,同高侧开关 (PMOS) 相比,内部低侧开关 (NMOS) 的开启时间更长,而对于高输出电压而言,高侧开关在大多数时间内均被开启。因此,适应这种尺寸以及其面向转换器输出电压开关的电阻是非常具有意义的。当然,假设条件是输入电压对于所有转换器而言(通常为一节锂离子电池或来自墙上电源适配器的一个固定电压)都相同。
对于 10mA 到 200mA 范围的输出电流而言,开关电阻不再是出现损耗的主要原因。取而代之的是电源开关栅极电荷和电感损耗决定了效率的高低。使开关频率适应输出电流是在该工作范围(被称为“脉冲频率调制” (PFM))内保持高效率的关键技术。PFM 只向输出提供恒定能量。这就带来高输出电流下的高开关频率,以及低输出电流下的低开关频率和随之而来的低开关损耗。在转换器极低输出电流条件下,由静态电源电流引起的持续损耗决定了上述效率的高低。所有 TPS65024x 系列产品均是以这种最小化损耗的方法来设计,从而带来宽电压和电流范围的最佳效率。表 1 是对 TPS5024x 系列产品的纵览,图 3 则显示了其结构图。
表1 TPS65024x 的选项
器件 DCDC3
处的电压
DCDC1、DCDC2、 DCDC3
上的输出电流
Vdd_alive
处的电压
所支持的处理器
TPS650240 1.0V / 1.3V 1.0A / 0.8A / 0.8A 1.2V Samsung S3C2443-400MHz
TPS650241 0.9V / 1.375V 1.6A / 1.0A / 0.8A 1.2V Samsung S3C2443-533MHz
TPS650242 1.0V / 1.5V 1.0A / 0.8A / 0.8A 1.2V Samsung S3C2442
图 3 TPS650240 结构图
图 3 中所显示的这种器件专门优化用于三星公司的应用处理器,这种处理器在低功耗模式下需要一个 1.0V 的内核电压,在正常工作模式下则需要一个 1.3V 的内核电压。为了最小化外部组件使用数量,降压转换器 1 拥有一个 3.3V 的固定电压,或一个用于 I/O 电压的 2.8V 输出。转换器 2 提供了 2.5V 或 1.8V 的存储器电压。转换器 3 的输出电压可以在 1.0V 和 1.3V 之间进行切换,其取决于被称为 DEFDCDC3 的数字输入状态。因此,无需外部组件来为降压转换器 1 和 2 设置电压。为了保持灵活性,可以连接一个外部电压分配器来在 0.6V至输入电压 (Vbat) 范围内设置转换器 1 和转换器 2 的输出电压。图 4 显示了设置转换器 1 和转换器 2 输出电压的一些选项。
图4 设置转换器1 和转换器2 上的输出电压
三个 LDO 中的两个均具有一个单独输入电压引脚,从而使它们可以在 1.5V 到 6.5V 的范围内由任何输入电压来供电。LDO3 由输入电压引脚 Vcc 内部供电。另外,它还具有一个电压比较器,其可以被用于探测电池电压是否降至某一阈值以下,并向应用处理器发出告警。
关键字:应用处理器  电源设计 编辑:冰封 引用地址:应用处理器专用电源设计

上一篇:可携式产品电源技术与趋势探讨
下一篇:应用处理器专用电源设计

推荐阅读最新更新时间:2023-10-18 15:48

嵌入式方案:高性能汽车中的电源设计
       引言        高可靠性、低成本、极短的研发周期等等相互冲突的设计要求迫使电源设计人员采用新的具有突破性的技术方案,而这些技术是传统的汽车电源设计中不曾涉足的。        汽车电源设计的基本原则        大多数汽车电源架构需要遵循六项基本原则:        1)输入电压范围VIN:12V电池电压的瞬间波动范围决定了电源转换IC的输入电压范围。        ISO7637-1行业标准定义了汽车电池的电压波动范围。图1和图2所示波形即为ISO7637标准给出的波形,图中显示了高压汽车电源转换器需要满足的临界条件。      
[电源管理]
嵌入式方案:高性能汽车中的<font color='red'>电源设计</font>
准谐振反激式电源设计之探讨
成本和高可靠性是离线 电源 设计中两个最重要的目标。准谐振 (Quasi resonant) 设计为设计人员提供了可行的方法,以实现这两个目标。准谐振技术降低了 MOSFET 的开关损耗,从而提高可靠性。此外,更软的开关改善了电源的EMI特性,允许设计人员减少使用滤波器的数目,因而降低成本。本文将描述准谐振架构背后的理论及其实施,并说明这类 反激 式电源的使用价值。 基本知识“准”(quasi)是指有点或部分的意思。在实现准谐振的设计中,现有的L-C 储能 电路 正战略性地用于PWM电源中。结果是L-C 储能电路的谐振效应能够“软化” 开关器件 的转换。这种更软的转换将降低开关损耗及与硬开关转换器相关的EM
[电源管理]
基于DSP的智能功放开关电源设计
周金博,章国宝 (东南大学 自动化学院,江苏南京 210096) 1 引言 开关电源以体积小,重量轻,功耗低,效率高,纹波小,噪声低,智能化程度高,易扩容等,逐渐替代工频电源,广泛应用于各种电子设备。高可靠性、智能化及数字化是开关电源的发展方向。音响功放要求电源随着负载变化自动调整输出电压,进而调节功率,以提高电源动态性能,降低音响功放内部损耗,但目前的开关电源无法实现。选用TMS320F2812型DSP作为功放开关电源的主控制器,设计一种低功耗。适用于大型功放系统的新型的智能功放开关电源。 2 智能功放开关电源设计 图1为智能音响功放开关电源的总体原理框图,主电路采用交一直一交一直的结构。输入工频220 V交流电路经滤波电路后,
[嵌入式]
基于DSP的智能功放开关<font color='red'>电源设计</font>
恩智浦推出采用14nm LPC FinFET打造的全新多核应用处理器系列
德国纽伦堡(2018年嵌入式系统展会)–2018年2月27日–凭借i.MX6通用型应用处理器系列数十年的成功经验,恩智浦推出首款采用14nm LPC FinFET先进工艺技术打造的嵌入式多核异构应用处理器i.MX 8M Mini。i.MX 8M Mini系列处理器集高性能计算、高功效和嵌入式安全于一体,可以适用于边缘节点计算、流媒体播放和机器学习等应用快速增长的需求。 其核心是可扩展的内核异构体,包括多达四个主频达2GHz的ARM Cortex-A53内核以及主频达400+MHz基于Cortex-M4的实时处理器。i.MX 8M的内核设计不仅针对超低功耗(在特定应用中甚至低于1瓦)进行了优化,还针对消费类、工业类、音频、机器学
[半导体设计/制造]
工程师经验:LED驱动电源设计七大技巧
  要说LED驱动 电源 设计并不难,前人的经验往往可以让工程师们少走许多弯路。古人有云:君子性非异也,善假于物也。善于借鉴他人的的经验与技巧不仅能让我们避免错误,还能帮助工程师们找出最快最有效的设计方法,节约时间成本。本文将为大家分享专家们经过大量实验总结出的七个LED驱动电源设计技巧。   对于制造商来说LED驱动电源的设计时非常重要的,那么,我们应该如何更好的设计LED驱动电源呢?来看看专家们总结出的七个LED驱动电源设计技巧。   1、智能控制是LED灯具的优势之一,而电源是智能控制的关键。   智能控制在LED路灯和LED隧道灯照明应用上条件最成熟效果最明显,智能控制能在不同时间段、根据道路车流密度来实现灯具功率的无
[电源管理]
LED路灯的电源设计方案综合介绍
LED路灯是LED照明中一个很重要应用。在节能省电的前提下,LED路灯取代传统路灯的趋势越来越明显。市面上,LED路灯电源的设计有很多种。早期的设计比较重视低成本的追求;到近期,共识渐渐形成,高效率及高可靠性才是最重要的。 立锜科技近年来推出了一系列LED照明的驱动IC,也一直关注LED路灯的发展。本文主要是针对几种不同LED路灯的应用,提出了适合的架构,并对其优缺点进行分析,以便让读者能根据具体状况和设计的路灯种类,找到最合适的方案。 方案一:直接AC输入,对6串 LED分别做恒流控制 在本文介绍的几种方案之中,这一种方案应该是目前效率最高、电路成本最低的方案(图1)。直接用光电耦合器对初级侧电路进行回
[电源管理]
LED路灯的<font color='red'>电源设计</font>方案综合介绍
分析电源设计中的电容选用实例
电源往往是我们在电路设计过程中最容易忽略的环节。作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。 电源设计中的电容使用,往往又是电源设计中最容易被忽略的地方。 一、电源设计中电容的工作原理 在电源设计应用中,电容主要用于滤波(filter)和退耦/旁路(decoupling/bypass)。滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。根据观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。“接收信号”相当于被观测的随机过程,“有用信号”相当于被估计的随机过程。 滤波
[电源管理]
分析<font color='red'>电源设计</font>中的电容选用实例
数字电源设计方式大势所趋
前言 :早在十几年前,诸如德州仪器、Microchip等公司就已经在传统的模拟电源设计中,混入了数字化的零件,现今信息产品在要求上要有更小的体积、更低的成本以及更高的可靠性即可控制能力,传统的模拟供电架构已经明显不敷这方面的应用。 电源技术发展趋势 图说:交换式电源转换系统。(数据源:交通大学) 信息产业往更小的制程发展,期望能为功耗问题带来正面的解决方式,然而芯片整合的功能越来越多,速度越来越快,新制程所带来的往往是更高的耗电与发热。然而新一代的信息产品不是在外型上,便是在体积上大做文章,信息产品体积缩小有几个好处,首先便是在大范围应用方面,比如说企业机房内部,当服务器的体积能够有效缩小,便能够在同样的单
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved