用于PC机5V电源的微型UPS设计

最新更新时间:2011-11-12来源: chinaaet关键字:控制信号  切换开关  直流稳压电源 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  随着电子技术的发展和社会的进步,电子设备与人们的工作、生活关系越来越密切。这些电子设备,例如PC机以及各种嵌入式系统等,对供电质量要求也越来越高。工作中突然停电或电源的不稳定将带来数据的丢失、设备的损坏、机器的误动作和整个系统的瘫痪等十分重大的危害。因此安全可靠的供电电源是我们不得不认真面对的重要问题。解决稳定电源问题的方法有滤波、线性稳压、UPS等多种,UPS是唯一可完全解决稳定电源问题的设备。

  UPS(UninterruptiblePowerSupply)是一种向负载提供不间断、优质、高效和可靠的稳定电压的电源。UPS,按其输出电压的不同可以分为交流UPS和直流UPS。交流UPS的工作原理是当市电电源正常时,一路市电通过整流器给蓄电池供电,直到蓄电池为浮充状态为止,另一路通过稳压器稳压再经转换开关直接向负载供电。当市电中断时,转换开关断开交流电的输入,AC/DC充电停止工作,蓄电池通过逆变器向负载供电。直流UPS的工作原理是当市电电源正常时,转换开关接直流稳压电源的输出,负载由直流稳压电源直接供电,同时用直流稳压电源给蓄电池充电,直到充满为止;当市电中断时,直流稳压电源输出中断,转换开关断开与直流稳压源的连接,由蓄电池经过DC/DC向负载供电。

  对于PC机和嵌入式系统等直流用电设备来说,采用直流UPS比交流UPS具有更突出的优点,诸如电路简单,所用元器件少、成本低廉、功耗小、体积重量小、可靠性高、制造容易、维护方便等。

  本文设计的直流UPS是基于MAXIM公司的MAXIM668控制芯片的Boost电路。该方案电路结构简单,独立切换,具有较高的输出精度。最后通过实验验证了理论分析的正确性和这种方案的可行性。

  2 UPS系统工作原理

  图1所示是本文中UPS系统框图。UPS系统由市电检测单元、UPS及切换单元组成。工作原理是,检测单元实时检测市电是否中断。当市电正常时,封锁Boost电路的驱动信号,UPS不工作,切换单元切换到开关电源,PC机由开关电源直接供电,同时由开关电源输出给蓄电池充电至浮充状态;当市电中断时,开启Boost电路的驱动信号,由切换单元切换到UPS,PC机由UPS供电。这样就能保证在电压正常或中断时均提供稳定直流电压给PC机。

  UPS系统检测单元如图2所示。检测单元由整流桥、RC电路以及光耦隔离电路组成,其输出out根据所检测的市电是否发生中断而产生逻辑电平。当市电正常时,市电通过整流桥整流,经RC作整流输出滤波得到直流电,经过R2使得光耦导通,使得检测单元输出out为低电平,从而封锁UPS控制信号,UPS不工作;当市电中断时,光耦不导通,检测单元输出out高电平,打开UPS控制信号,启动UPS。值得注意的是,这里C1取值较小,以保证市电检测的实时性。

  图1虚线框中为系统设计的UPS,由控制驱动电路、Boost电路、和蓄电池组成。图3所示为其电路图。其中控制驱动电路采用MAXIM公司的MAXIM668芯片。这里用蓄电池给芯片供电。MAXIM668是一种固定频率的工作于电流模式的PWM控制器。正常工作时,通过电压闭环反馈调节和电流峰值调节来控制其输出的PWM信号,以达到稳压输出的目的。SYNC/SHDN为片选信号,高电平有效,由检测单元的输出out控制。REF端内部产生1.25V参考电压。FREQ端接电阻Rosc来控制芯片的工作频率。FB端为反馈端,通过反馈电阻R2、R3分压的结果与芯片REF端的1.25V电压进行比较来控制MAXIM668的工作,构成电压闭环反馈调节。CS+端外接检流电阻,通过比较检流电阻上的电流值与芯片内部由电压调节器决定的电流峰值,来控制芯片EXT输出端的PWM信号的脉宽,构成电流峰值调节。UPS的主电路为一个Boost电路。通过控制EXT输出端的PWM信号的脉宽,保证Vout为稳定的5V。蓄电池在此不仅给Boost电路供电同时要给控制芯片MAXIM668供电。

  切换单元原理如图4虚线框中所示。其基本原理为当市电处于正常或中断状态时分别使开关电源或UPS向负载供电。从而保证负载供电稳定。图中的继电器都为常开状态。

  中用检测单元输出out和UPS输出Vout共同作用来控制切换单元是否动作。控制逻辑中先将Vout做两级施密特反相器,使其不工作时输出0,正常工作时输出1。再将变换后的Vout和out做与逻辑。使得当out和Vout输出同时变为高电平时继电器M1关断,继电器M2闭合;当out和Vout输出任一个变为低电平时,M1闭合,M2关断。

  由于继电器的机械特性会带来切换开关动作时关断比闭合快的问题,导致在切换开关对开关电源和UPS进行相互切换时,会有一段负载供电的缺口。文中设计了一个控制延时关断、立即闭合的环节解决这个问题。

  当市电由中断到正常时,控制逻辑输出为0。此时对M1而言,控制信号为1,因此为立即闭合状态;对M2而言,控制信号为0,因此为延时关断。反之亦然。

  3 关键参数计算

  3.1 MAXIM668芯片频率计算

  MAXIM668允许的频率范围是100KHz-500KHz,其芯片的频率设定公式如式(1)所示。由式(1)可知,选定不同的芯片的工作频率fosc即可求得Rosc。本文取fosc为100KHz,可求得Rosc

  3.2 MAXIM668反馈电阻计算

  UPS系统指标要求是输出5V电压,根据MAXIM668芯片的反馈电阻设定的公式

  在此,Vout=5V,VREF=1.25V。选择R3=10KΩ,则R2=30KΩ。

  3.3 Boost电路中电感值计算

  本文中的蓄电池采用三节1.2V串联给Boost电路供电为3.6V。为了满足PC机的可靠供电,设定电感L上的电流纹波必须为PC机允许范围内,这里取纹波为50mA,则I(peak-peak)=100mA。由f=100KHz,则T=10μs,由升压斩波电路输出输入电压与开关管通断时间的关系如式(3)。

  3.4 供电时间计算

  对于UPS系统,在切换至UPS后能让负载维持正常供电的时间也是我们所关心的。在蓄电池选定后其安时数一定,因此供电时间由负载所需电流决定。针对本系统给定负载所需电流Iload为3A,蓄电池的安时数为150mAh,则供电时间为3分钟。也就是说在断电3分钟时间之内,PC机可以对数据进行保存处理,保证了市电正常后可以正常运行。

  4 实验结果分析

  4.1 UPS主电路实验结果

  图5为UPS工作时的实验波形。在其中1为Boost电路中MOSFET的驱动信号波形(每格5V),2是Boost电路中MOSFET的漏极波形(每格2V),3是Boost电路的输入电压(以及蓄电池电压)波形(每格2V),4号是Boost电路的输出即UPS最终输出的电压波形(每格5V)。可以从图中看出UPS系统在切换后仍然可以提供稳定的5V电压给负载。

  图6所示为切换单元在进行切换时的波形。图中0~42ms为切换开关接到开关电源端的波形,42ms后为切换开关接到UPS端的情况。其中1是MAXIM668的片选信号即检测单元的输出out的波形,2是MAXIM668输出给开关管栅极的控制信号波形,3号是UPS系统最终输出电压Vout波形。

 

  从图中可以看出,市电在42ms时刻之前中断,系统可以迅速检测到中断信号使MAXIM668工作产生驱动信号,并且UPS系统立即启动,反应速度快,输出的直流电压为稳定5V。

  5 结论

  本文设计了一种基于MAIXM668升压斩波电路的微型UPS系统。控制电路采用MAXIM公司的MXAIM668芯片。整个系统电路简单,响应速度快。实验验证了该方案的有效性。

关键字:控制信号  切换开关  直流稳压电源 编辑:探路者 引用地址:用于PC机5V电源的微型UPS设计

上一篇:锂离子电池充电系统的差异与选择
下一篇:可多路独立供电的半桥DC/DC变换器的设计

推荐阅读最新更新时间:2023-10-18 16:03

电路分析:经典集成直流稳压电源电路
  任何电子设备的工作都离不开直流 电源 ,晶体管、集成电路正常工作都需要直流电源供电。提供直流电的方法主要有干 电池 和 稳压电源 两种。干电池具有输出电压稳定便于携带等优点但是其容量低寿命短的缺点也十分明显。而直流稳压电源能够将220V交流电转换为源源不断的稳定的直流电。它由变压、整流、滤波、稳压四部分电路等组成。参考电路如图1所示。   变压   稳压电源的输出电压一般是根据仪器设备的需要而定的,有的仪器设备同时需要几种不同的电压。单独的稳压电源,其输出电压在一定的范围内可以调节,当调节范围较大时,可分几个档位。因此,需要将交流电通过电源 变压器 变换成适当幅值的电压,然后才能进行整流等变换,
[电源管理]
电路分析:经典集成<font color='red'>直流稳压电源</font>电路
AT89C51数控多路直流稳压电源
当今社会人们极大的享受着电子设备带来的便利,但是任何电子设备都有一个共同的电路--电源电路,直流电源趋向多功能和数字化方向。直流稳压电源的供电电源大都是交流电源,当交流供电电源的电压或负载电阻变化时,稳压器的直流输出电压都会保持稳定。 直流稳压电源随着电子设备向高精度、高稳定性和高可靠性的方向发展,对电子设备的供电电源提出了高的要求。本文以单片机为核心,构成可同时控制6路正负输出,具有定点显示和巡回显示等功能的数控直流稳压电源。    1 系统的功能和特点   系统有6路电压输出,其中3路为正,3路为负。电压调节范围为0~35 V ,最大输出电流(A )分别为5,2和1,具有过流保护功能。数字显示有5位,其中1位显示路号,
[电源管理]
AT89C51数控多路<font color='red'>直流稳压电源</font>
STM32F103控制ADS1115采集模拟信号
程序已经通过 0、定义通道 #define TongDao0 0xc2e3 #define TongDao1 0xd2e3 #define TongDao2 0xe2e3 #define TongDao3 0xf2e3 1、STM32F103的IIC端口初始化 void ads1115_io_init(void) { GPIO_InitTypeDef GPIO_InitStruct; // RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); GPIO_InitS
[单片机]
飞思卡尔最新数字信号控制器提供低功耗和高性能
随着全球对环保设施和工业设备的需求日益增长,制造商正在寻找新途径来提高能源效率同时降低系统成本。为了满足这些需求,飞思卡尔已经推出了一系列数字信号控制器(DSC),旨在以极具竞争力的价格提供节能的电机控制。 新的MC56F8006系列是嵌入式市场已有的最节能的DSC系列之一,也是最经济高效的DSC产品,有助于降低开发费用和能耗,适合各种电机控制和电机驱动应用,包括设备。DSC提供的先进的电机控制和能耗转换功能可以显著提高设备的效率和可靠性,并节约能源。例如,DSC数字控制的洗衣机的电机能够更有效地支持搅拌旋转,从而节约用水,缩短自旋周期,减少甩干时间,节约能耗。 MC56F8006 DSC用一套灵活的
[嵌入式]
精确控制DDS输出信号幅度的一种新方法
DDS技术作为一种先进的直接数字频率合成技术,用数字控制的方法从一个频率基准源产生多种频率,具有高可靠性、高集成度、高频率分辨率及频率变化快、控制灵活等特点,在通信与仪表领域得到了广泛的应用。采用DDS芯片制作的信号源,输出信号的频率和幅度都可由微机来精确控制,调节非常方便,常用的幅度调节方法是在DDS输出端加数字增益控制电路,或者通过改变DAC的参考电压或编程电阻来实现。本文介绍一种新的幅度控制方法,通过控制DDS的 DAC满刻度电流的大小来实现对输出幅度的调节,能够保证DDS的无杂散动态输出范围(SFDR)指标,而且控制手段更直接、更精确、更灵活。    系统硬件设计与实现   1 总体结构   系统主要由三部分组成:单片
[单片机]
精确<font color='red'>控制</font>DDS输出<font color='red'>信号</font>幅度的一种新方法
工程师推荐一款两用可变直流稳压电源电路设计
两用可变直流 稳压电源 ,是无线电爱好者必备的维修时使用的仪器。这里介绍一种输出±1.25V~15V或+1.25V~30V,输出电流约1.5~2A左右。它容易制作,使用起来方便且得心顺手。 电路工作原理见下图。本电路最大的优点是采用两块三端可调稳压块LM317、LM337。在维修使用过程中,当开关K拨至位置“1”时,由电源变压器T 次级降至17.5V×2的交流电压,经VD1~VD4整流后分别送到LM317和LM337的输入端,再经取样电阻R1、R2和输出电压调解电位器 RPl、RP2的控制,就可以在输出端得到±1.25~15V连续可调的电压。当选择开关K位置拨在“2”时,就将双组输出的电源变压器T组作为单组使用,经整流、滤波后只送
[电源管理]
工程师推荐一款两用可变<font color='red'>直流稳压电源</font>电路设计
单片机控制的DBPL编码信号源系统设计
引言 DBPL(Differential Bi-Phase Level)编码是一种超越传统数字传输极限的编码方式。DBPL编码被广泛应用于以太网、工程测井仪器和铁路应答器等工程应用中。在铁路应答器中,通过DBPL编码传输信号给列车车载处理器,实现对列车运行的控制。 本文设计了一种基于AT89LV51单片机控制的DBPL编码信号的信号源系统,能够产生DBPL编码信号;同时设计了系统的电源管理模块,保证系统的正常供电。 1 信号源系统的设计 该信号源由时钟复位模块、DBPL信号产生电路、DC-DC转换电路、充电管理电路和A/D转换电路组成。单片机AT89LV51控制编码模块产生DBPL信号;充电管理电路对系统所用电池进行充
[单片机]
单片机<font color='red'>控制</font>的DBPL编码<font color='red'>信号</font>源系统设计
MAX3420E外设控制器的中断系统
MAX3420E可与任何SPI主控制器相连,以构成全速USB外设器件。尽管一般都由MAX3420来管理底层USB信令,但是需要处理USB事件时,SPI主控制器必须参与处理,当MAX3420的INT引脚指示有中断发生时,SPI主控制器将读取14个中断请求位,以确定需要服务的中断,一般情况下,主要由这些中断请求(IRQ)位确定MAX3420E的工作过程,在选择器件时,SPI主控制器可以是微控制器、DSP、ASIC或具备SPI端口的其他器件,并应能提供SCLK信号。 MAX3420E的中断逻辑 ◇ IRQ位 图1所示为MAX3420E中断逻辑。阴影部分是可通过SPI访问的寄存器位,图中有一个IRQ位,实际上,每一个中断都有一个用于
[工业控制]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved