红外光谱仪器使用原理和描述

最新更新时间:2011-11-23来源: chinaaet关键字:红外光  谱分子  谱图 手机看文章 扫描二维码
随时随地手机看文章

  红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

  红外光谱可以研究分子的结构和化学键,测温仪如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。

  由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

  分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,lx-101白光照度计这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

  人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。

  当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,红外测温仪原理和选型由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。

关键字:红外光  谱分子  谱图 编辑:探路者 引用地址:红外光谱仪器使用原理和描述

上一篇:红外、微光与可见光融合的信息感知系统
下一篇:电力线通信技术原理及应用

推荐阅读最新更新时间:2023-10-18 16:08

研究人员制造出超紧凑型片上中红外光谱仪 可应用于自动驾驶汽车
据外媒报道,一国际小组研究人员开发出一种中红外光谱仪,其直径比人类头发丝还小。中红外光谱仪可应用于温室气体检测,且可以使自动驾驶汽车更安全。因此,近年来,人们对开发紧凑型片上光谱仪非常感兴趣。传统光谱仪体积较大且价格昂贵,而片上光谱仪可极大地扩大该技术的应用和易访问性。 为实现该目标,来自美国、以色列和日本的一组研究人员开发出一种超紧凑型中红外光谱仪。此项研究由耶鲁大学工程与科学学院Barton L. Weller副教授Fengnian Xia、以色列巴伊兰大学(Bar-Ilan University)Doron Naveh教授和日本国立材料科学研究所(National Institute for Materials Scie
[汽车电子]
研究人员制造出超紧凑型片上中<font color='red'>红外光</font>谱仪 可应用于自动驾驶汽车
一种高可靠小车红外光循迹电路的设计方案
  本文针对小车采用传统光循迹电路的两点不足,提出了一种高可靠小车红外光循迹电路的设计方案。该方案用低占空比强红外光调制发射能克服环境光线的干扰;再对光接收信号进行交流放大后解调能进一步克服环境干扰;采用逐个循环发射、接收能克服光衍射对相邻光敏管的干扰,最后给出设计方案的电路结构框图及部分电路图。经分析该方案避免了传统设计繁琐的调试工作量,可以满足各种环境光线的应用。    0 引言   历届全国大学生电子设计竞赛、全国职业院校大学生职业技能竞赛、飞思卡尔杯全国大学生智能车竞赛几乎都包含小车类的赛题。小车类赛题大部分又都有循迹的要求。循迹的方法一般可分为光控循迹、摄像循迹控两类。光控循迹成本低、软件设计较为简单,设计制
[单片机]
一种高可靠小车<font color='red'>红外光</font>循迹电路的设计方案
基于ARM的红外光汽车速度管理系统研究
1 引 言 车辆在公路上应以与路况相符的速度行驶,太快了易出事故, 太慢了将成为后续车辆的绊脚石。但是,常有个别司机不按规定的速度行驶而违章,导致事故频生。交管部门为了取证纠违, 目前多采用雷达测速系统(利用多普勒效应)对违章车辆进行测速取证,予以处罚。 可近期市场上出现了一种叫做 电子狗 的反雷达测速装置,此装置在接近雷达测速区时,能提前捕捉到雷达测速的信息而报警,使违章车辆逃脱处罚,事故隐患犹存。因此,研究一套既能准确测定汽车速度, 又不会被 电子狗 所发现的可靠测速、管理系统就尤为必要。 本文研究的以红外光传感器、ARM 为核心部件的新型测速系统测速时不会被 电子狗 所发现,不仅能识别汽车速度V
[单片机]
基于ARM的<font color='red'>红外光</font>汽车速度管理系统研究
红外光谱无创血糖检测技术研究
  糖尿病是一种内分泌疾病。据报导,1997年全世界的糖尿病患者超过1.2亿,到2010年将会增长到2.2亿以上。现有对糖尿病较有效的治疗手段是通过频繁的检测和胰岛素注射来对血糖浓度进行控制,从而减少或减轻由糖尿病导致的并发症。   检测血糖的方法主要是从体内抽取血液通过生化检测进行分析,这属于有创伤检测,有创伤检测给患者带来的痛苦和不便。无创性血糖检测已引起人们极大的关注,其意义是:(1)减少患者天天采血丈量的痛苦,进步病人的生存质量;(2)可进步丈量次数,进步血糖控制精确度,降低糖尿病并发症发生的危险;(3)降低每次丈量的本钱;(4)有可能形成含有检测器和胰岛素注射的闭环循环系统;(5)其丈量方法和原理可以推广应用到其它
[测试测量]
傅里叶变换近红外光谱分析技术在茶叶中的应用
近红外光谱分析技术近年来巳成功应用于食品、烟草、药品及化工等诸多行业产品的分析测定,特别在农副产品的品性分析上,因其快速、无需前灶理、非破坏性及多组分同时定量分析等优势而得到更为广泛的应用。日本早在70年代就已将近红外光谱分析技术应用于茶叶多种组分的定量分析,如茶多酚、咖啡碱、全氮量、粗纤维等的定量分析,并取得了良好的效果。国内应用近红外光谱测定茶叶中的成分也有报道,但局限在传统的运用特定波长确定某种成分的多元回归方程的研究阶段。目前,随着化学计量学和计算机技术的快速发展,近红外光谱分析已转向以分析弱信号和多组分多元信息处理为基础的阶段。特别是随着80年代傅里叶变换在近红外光谱仪中的应用,增加光通量,提高了信噪比,使所得谱线平滑,从
[测试测量]
一种高可靠小车红外光循迹电路的设计方案
历届全国大学生电子设计竞赛、全国职业院校大学生职业技能竞赛、飞思卡尔杯全国大学生智能车竞赛几乎都包含小车类的赛题。小车类赛题大部分又都有循迹的要求。循迹的方法一般可分为光控循迹、摄像循迹控两类。光控循迹成本低、软件设计较为简单,设计制作周期短;摄像控循迹则相反:成本高,软件设计复杂,设计制作周期长。小车采用传统光循迹电路的两点不足也是显而易见的:一是容易受环境光线的影响而照成误判;另一点是由于光衍射现象的存在又容易被相邻的光敏管接收而造成误判。本文就此两点不足提出一种高可靠小车红外光循迹电路的设计方案以解决此问题。 1 传统光循迹小车电路结构 1.1 小车循迹简介 所谓小车循迹,就是在白纸上画出黑色的线条,称为赛道;小车沿着赛道按
[电源管理]
一种高可靠小车<font color='red'>红外光</font>循迹电路的设计方案
基于VCSEL红外光源的DMS解决方案
摘要:司机在驾驶过程中使用手机、吸烟、疲劳驾驶等不良驾驶行为严重影响交通安全,所以对驾驶员危险行为检测的 DMS 系统就尤为重要。本文将为大家介绍基于 VCSEL 红外光源的 DMS 解决方案。 一、DMS 市场概况 DMS(Driver Monitor Status )防疲劳预警系统:利用 DMS 摄像头获取图像,通过视觉跟踪、目标检测、动作识别等技术对驾驶员的驾驶行为及生理状态进行检测,当驾驶员发生疲劳分心、打电话、抽烟、未系安全带等危险情况时,在系统设定时间内报警以避免事故发生。 在欧洲,已经开始要求 2022 年在汽车出厂时必须配备 DMS 系统。 根据 JT/T883-2018 相关国标要求,DMS 系
[汽车电子]
基于VCSEL<font color='red'>红外光</font>源的DMS解决方案
红外光谱仪的分类
红外光谱仪一般分为两类,一种是光栅扫描的,很少使用;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是目前比较广泛使用的。 光栅扫描的是利用分光镜将检测光(红外光)分成两束,一束作为参考光,一束作为探测光照射样品,再利用光栅和单色仪将红外光的波长分开,扫描并检测逐个波长的强度,然后整合成一张谱图。 傅里叶红外光谱仪 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定
[测试测量]
<font color='red'>红外光</font>谱仪的分类
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved