简明易懂 图解电源工作原理

最新更新时间:2011-12-01来源: OFweek半导体照明网关键字:图解  电源  工作原理 手机看文章 扫描二维码
随时随地手机看文章

  电源的定义和分类

  同学们,今天我们来学习一堂关于电源工作原理的课。因为是针对新手的知识普及课,所以在下会用朴实的语言尽量的把这堂课讲得通俗、简单、易懂一些。如果有专业大师级别的看客路过的话,还望多多交流。

  我们先来讲讲什么是电源?顾名思义,就是提供电能的装置。而我们所说的直流电源,主要是指线性电源和开关电源两种类型的电源。

 

  

  电源的分类

  接下来我们来对比一下这两种类型的电源有什么不同之处?如下图所示。

 

  通过上面的表格我们能够得出,高频开关电源是更适用于我们的计算机的供电装置。而我们市场上最常见的电源还采用了闭合回路系统,负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PWM,Pulse Width Modulation,脉冲宽度调制)。从而提高了电能的有效利用率,同时又降低了电器元件的损耗。

  这种采用闭合回路系统的高频开关电源在目前的市场之中,还可以根据结构分为主动式PFC设计的电源和被动式PFC设计的电源两种。

  因为主动式PFC设计的电源比被动式PFC设计的电源的生产成本高,所以我们可以简单的认为,主动式PFC设计的电源是相对比较高端的电源,而被动式PFC设计的电源是比较低端的电源。

  市电变计算机直流电

  下面我们就来讲一讲这种高频开关电源在我们的生活之中是如何应用的。众所周知,我们日常生活中的用电是220V的交流电,而我们的计算机需要的是直流电。那么,这个开关电源是如何实现这样的电能转变的呢?咱们还是通过几张图来解释一下这个转变过程。

 

  通过上面的图解,我们知道计算机的直流电是通过电源做了四次转变而来。

  市电经过EMI→低压交流电经过整流桥→脉动电压经过电容→有纹波的直流电经过变压器和二次侧→得到低压直流电。

  而这四次转变分别是

  1.市电通过EMI变成低压交流电;

  2.低压交流电通过整流桥变成脉动电压;

  3.脉动电压通过电容变成有纹波的直流电;

  4.纹波直流电通过变压器和滤波电路变成纯净的低压直流电。

  这样我们就知道了市电转变成计算机低压直流电的一个简单过程。接下来我们再来详细解读一下这个过程。

  四部分的结构和作用

  通过前面的图解,我们知道了市电是通过四个部分,五次转变而最终得到计算机的低压直流电的。下面我们就来讲解一下这是由电源的哪四个部分来完成这个转变的。先来上一张电流流程图。

  

  电流流向示意图

  接下来我们就来详细的讲一下上面的四部分在市电转变成计算机直流电的过程之中起到的作用。

  1.220V市电流入EMI(瞬变滤波电路),先进入一级EMI(由电容和铁素体电感组成)后进入二级EMI(由MOV压敏电阻和铁素体线圈以及保险管组成),通过“X”电容(金属化聚酯电容)来滤除电流中的高频和脉冲干扰,流出无尖峰、低电压的交流电;

  2.低压交流电流入整流电路,进入整流桥(可由4颗二级管组成,亦可由单个元器件组成)矫正和整流,流出单向脉动性直流电压即脉动电压;

  3.脉动电压流入主电容部分,流过聚酯电容和陶瓷电容来滤除高频及脉冲干扰,流过主电容滤波防止干扰,流出有电压波动的DC即纹波直流电;

  4.有纹波的直流电流入变压器和二次侧,首先是进入变压器稳压,然后进入二次侧部分,由二次侧的稳压器IC芯片、稳压二极管和大功率肖特基整流桥来进行稳压及整流,由聚酯电容在此进行滤波,最终得到纯净的低压直流电,就是计算机直流电了。

  经过上面的讲解,我们就可以大体的了解到开关电源把市电交流电转换成计算机直流电的简单原理和过程了。为方便大家建立完整的知识架构,我在这里用一张电源的知识结构图来帮助大家理解和记忆本系列文章的知识内容。

  

  通过上面的这张电源的系统知识的结构图,我相信大家已经建立了电源知识的简单的系统框架,不知道看客您有没有获得足够的有效信息呢?如果您觉得理论性太强不实用的话,可以扩展阅读小编关于实战选购技巧的文章。如果您想追根朔源,进一步的了解相关知识的话,可以扩展阅读小编的相关理论文章。最后,还请大家期待我们的下一堂课吧。

关键字:图解  电源  工作原理 编辑:探路者 引用地址:简明易懂 图解电源工作原理

上一篇:可编程触摸键盘设计
下一篇:开关电源钳位保护电路及散热器的设计

推荐阅读最新更新时间:2023-10-18 16:10

LED照明电源电路设计典型问答
  LED驱动方案选型讨论   1. LED驱动IC特点与选择   网友提问:LED驱动必须用专用LED驱动IC吗?与普通IC相比有何优缺点呢?   专家回复:LED驱动专用IC的优点是Vin宽、输出电流大、恒流精度高、采用抖频可有效降低EMI。   LED驱动用恒流源主要是保证LED在发光的工作时间段光线亮度一致、不闪烁。低价手机用LDO来驱动背光的LED也是常用的,只是电源的利用率不高,好在大多手机设计锂电池电压降致3.3V时关机。LED照明灯具用LDO来驱动就不是好方法了,LDO不能恒流。   网友提问:那么国产和外国LED驱动IC又该怎样选择?   专家回复:LED驱动IC很多,
[电源管理]
LED照明<font color='red'>电源</font>电路设计典型问答
CDMA与DS-UWB具有不同的工作原理和应用领域
超宽带(UWB)系统目前广泛应用于家庭娱乐系统的无线连接,如家庭媒体中心、机顶盒、电脑、各种播放器等与大屏幕高清电视的连接;而且也非常适用于各种移动设备和娱乐设备之间的连接,如手机和电脑等。业界普遍认为UWB是未来短距离高速无线系统的最佳解决方案之一。 尽管DS-UWB可以用CDMA的某些术语来描述,但是DS-UWB和蜂窝移动电话CDMA所用的核心技术实际上是有很大区别的。驱动蜂窝移动电话CDMA发展和实施的应用模式,是有着成千上万个用户同时工作的基站/客户模式,这个模式没有对等连接,以低速率(kbps)运行,覆盖长距离(数公里)。相反,驱动DS-UWB发展和实施的应用模式则刚好反过来,即只有一个或少数几个用户,以对等方式
[嵌入式]
快速增长的数字宇宙中的服务器电源
   1 增长的服务器密度   到2020年末, 数字宇宙 (一年内创建、复制和消耗的所有数字数据的度量单位)将达到40泽字节(ZB,40×1024字节),这相当于在2010年基础上增长了50倍 。   为了支持这一空前的流量增长。服务器都采用了多核处理器,并增加了每个板的处理器数量。整体机架密度也已经提高,从1996年的每机架7台服务器达到2010年的每机架20台服务器。机架功率也以同种方式增加了,从2000年的千瓦/机架达到2007年的10kW/机架,今天许多新安装的设备超过了20kW/机架。   对于新设备和那些正在升级的服务器,这些趋势已经很难继续用使用单相AC-DC转换器的12V电压在机架级分配电能。    2 12
[电源管理]
快速增长的数字宇宙中的服务器<font color='red'>电源</font>
工程师推荐:电源电子设备的电磁兼容性研究方案
随着 电子 技术的迅速发展,现代的电子设备已广泛地应用于人类生活的各个领域。当前,电子设备已处于飞速发展的时期,并且这个发展过程仍以日益增长的速度持续着。电子设备的广泛应用和发展,必然导致它们在其周围空间产生的电磁场电平的不断增加。也就是说,电子设备不可避免地在电磁环境(EME)中工作。因此,必须解决电子设备在电磁环境中的适应能力。 电磁兼容 性(EMC)是一门关于抗电磁干扰(EMI)影响的科学。 电磁干扰源的分类 各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,它是 电磁兼容 性设计中需要研究的重要内容。电磁干扰源可分为内部干扰和外部干扰。内部干扰是指电子设备内部各元部件之间的相互干扰,包括工作电源通过线路的分布
[电源管理]
完整易用的电源管理和转换IC
电源管理 方案 电源管理是当今的1个热门技术。电源管理包括 电源 监控、定序、容限等(图1)。电源管理需要新的方法。图2示出Zilker Labs公司的方案。 表1 电源模块BoM比较 电源模块BoM的Zilker方案与模拟方案的比较见表1。 从表1可见,Zilker方案的显著优点是:较大的 电流 能力、较少的元件、更多的性能。 图1  电源管理框图 Zilker Labs的Digital-DCTM技术的特点是: ⊙电源转换精确控制; ⊙集成电源管理; ⊙容易使用,不需要编程; ⊙小的占位面积,较少的分立元件; ⊙灵话的设计; ⊙高效率; ⊙宽工
[电源管理]
完整易用的<font color='red'>电源</font>管理和转换IC
索尼Xperia 20外形渲染图解密:左右对称双挖孔
索尼是为数不多或者仅有的在旗舰机上至今坚持不使用异形屏的企业,甚至独家打造出了21:9超宽纵横比、4K分辨率的电影屏。 不过,最新在网上曝光的渲染图显示,疑似Xperia 20的手机居然采用了左右上角各一颗开孔的新奇做法。 看起来,手机还采用了背部居中三摄,倒是有一定的家族延续性。 坦率来说,从渲染图质量来看,PS痕迹颇重,在Slashleaks上的可信指数也仅有50%。 目前行业的主流趋势是,如果要在正面集成多摄、多传感器的同时最大化提高屏占比,挖孔是当下最佳方案,毕竟从美学的角度,一处“受伤”总比索尼这种“千疮百孔”强。 当然,索尼手机向来特立独行、专注做“小而美”,从这个角度看,做一些尝试性探索似乎也无可厚非。
[手机便携]
10年LED驱动电源设计,恒流IC使用心得总结
  以前的 LED灯具 都是用恒压 电源 ,当时不了解 LED 的性能,按照厂家给的数据每只小灯珠给到20MA,经过我们 测试 后,灯珠总是烧掉,才知道厂家的数据是不可靠的,我们减小了电流使用。那时是在2002年,做些MR16小灯泡,广告牌之类的应用。我是2007年才开始做恒流 驱动 ,什么HV9910,PT4107,PT6901,SN3910,IR的,试验多了,但是最先成功的是QX9910,出过一些货,但是QX9910有很多不良品,老化后的产品也不太稳定,经常有闪灯现象,现在还有一些剩余的做纪念品了。我认为,要想做好驱动,先要找好芯片。   当初在07年的时候,恒流 IC 很难找到,价格也贵的离奇,一片HV9910要8元,
[电源管理]
纤巧、24 位、4 通道增量累加ADC具有校准的温度传感器和Easy Drive输入电流消除技术
2006 年 11 月 28 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出 4 通道增量累加模数转换器( ADC ) LTC2492 ,该器件在纤巧的 4mm x 3mm DFN 封装中集成了一个温度传感器和一个新颖的前端设计。 LTC2492 的 Easy Drive TM 设计产生的平均差分输入电流为零,因此无需内部缓冲器就可测量高阻抗输入电源。这个已获专利的采样电路简化了前端信号调节电路的设计,并允许直接用电桥、 RTD 、热电耦和高阻抗传感器驱动该 ADC 。轨至轨输入信号可以直接数字化,同时保
[新品]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved