设计开关电源转换器中电容阵列的数学方法

最新更新时间:2012-11-11来源: 维库电子关键字:开关电源  转换器  电容阵列 手机看文章 扫描二维码
随时随地手机看文章

  在便携音乐播放器和笔记本/桌面计算机等消费电子设备中,通常会包含ASIC、处理器、存储器和LED背光等器件。作为系统负载,这些器件需在合适的电压下才能正常工作,所以人们通常使用能改变电压的转换器为这些器件供电。电压转换器通常使用开关拓扑,电容器则在负载电流发生跃变时或在负载时变的情况下被用于解耦负载。

  由于还没有一种计算方法能计算出充分且必要的电容量,所以,系统设计者在设计用于降压转换器输出端的电容阵列时,常常面临很多困难:或许会选择了较小的电容量,转换器的电压可能达不到要求进而导致负载工作不稳定;或许选择的电容量偏大,在元件成本和PCB面积方面造成浪费,进而额外增加消费电子设备的单位成本。

  降压转换器自身带有电压反馈系统。电压反馈系统检测负载上的电压,然后,把检测到的电压与参考电压进行比较,将偏差放大并通过调整占空度来修正负载上的电压(图1)。

  关于反馈环如何优化的问题属于另一个话题,本文暂不作探讨。借助电源芯片公司提供的高级仿真工具和计算工具,我们能很容易的实现降压转换器反馈系统的优化。

  许多系统设计者没有弄清楚波特图、频域分析、暂态电压波形、以及时域分析之间的差别。实际上,它们是在两个域进行的分析:一个在频域,一个在时域。频域分析和时域分析在数学上可以通过拉氏变换函数进行转换。

  波特图或频域分析可以方便地以图形方式显示出给定系统的过零频率(ZCF)和相位裕度,但很少能显示转换器在给定的阶跃载荷电流下的运行情况。这些信息也许对满足某些内部设计规则很有用。


  图1:降压转换器自身带有电压反馈系统。

  为什么分析阶跃响应如此重要呢?

  处理器对电压变化范围的要求较为严格,电压范围由上限和下限给定,或由标称电压和容差(如正负50mV)给定。而硬盘或PCI总线电压轨对电压的要求较为宽松,能在几百毫伏的容差范围内可靠地工作。如果给反馈系统施加阶跃电流,则在反馈系统的输出端会出现一个相应的响应(阶跃响应),本文中则是以输出电压为例。因而,如果把阶跃电流或模拟负载电流施加到转换器的输出端,转换器的输出端将经历一个电压变化过程。如果电压变化过程的最小值和最大值保持在容限范围之内,负载将正常工作。

  可以用电阻和开关FET产生阶跃电流函数。我们需计算出电阻值和FET门的压摆率(slew rate),并使之与真实负载的幅度和边缘速率相匹配。在使用电子负载时我们须非常小心,因为长线缆或寄生电感可能使阶跃电流变形,进而导致在输出端看不到阶跃响应。当负载边缘速率高时尤其应对这个问题给予关注。

  在平衡态,除了开关纹波电流成分之外,开关转换器的电感电流和负载电流是匹配的。如果电感电流偏离负载所需要的电流,能量供求差异会导致输出电容的电压发生变化,此时输出电容就会以充电/放电的形式吸收或补充能量,进而保持输出电流稳定。

  图2a和图2b显示了两个负载跃变的暂态过程,分别对应于经过优化和未经优化的反馈环,前者能量供求差异被降到最小,而后者能量供求差异较大。阴影区域显示在电感和负载之间的能量供求差异。


  图2a, 图2b:两个负载跃变的暂态过程。

  在本文中,我们假设反馈环经过了优化设计,能量供求关系如图3a所示。图3b显示在加载过程中由输出电容补充的电流量,图3c显示了在卸载过程中输出电容吸收的电流量。


  图3a, 图3b, 图3c:反馈环经过了优化设计后的能量供求关系。

  对电感两端的电压积分并除以电感值可计算出流过电感的电流。在加载过程中,转换器的占空比变成1。因而,如果把加载过程的起始时间设为t=0,则通过输出电容所补充的电流(如图3b)为:


  在卸载过程中,转换器的占空比变成0。因而,如果把卸载暂态过程的开始时间设为t=0,则输出电容吸收的电流(如图3c)为:


  其中,V(SUB/)in(/SUB)、V(SUB/)out(/SUB)、L分别是该降压转换器的输入电压、输出电压和电感值;I(SUB/)1(/SUB)是轻负载时的输出电流电平,I(SUB/)2(/SUB)是重负载时的输出电流电平。


  图4为输出电容器的等效电路。

  在图4中,C是等效纯电容,R(SUB/)esr(/SUB)是等效串联电阻。当输出电容器在加载过程中放电时,输出等效纯电容上的电压可通过对方程1积分得到:


  输出电容器两端的总电压降为ESR两端的电压降和等效纯电容上的电压降的和,因而:


  方程3是一个二次方程,在局部极点(local pole)处出现极值。局部极点发生在:


  在方程4中,最大电压降发生在t = tlp_d,其值为:



  如果tlp_d是负数,那么最大电压降实际发生在t=0,因为在t>0区间是单调衰减的,因而,最大电压降为:


  类似地,在卸载过程中输出电容充上了电,通过对方程2进行积分可得到输出电容器两端在等效纯电容上的电压提升:


  输出电容两端的总的电压提升为ESR两端的电压提升和等效纯电容上电压提升的和,因而:


  方程6是一个二次方程,在局部极点处出现极值。局部极点发生在:



  最大电压提升发生在t = tlp_r,其值为:


  如果tlp_r是负数,那么最大电压提升实际发生在t=0,因为在t>0区间方程是单调衰减函数,因而,最大电压提升为:


  以图像处理器单元(GPU)为例,我们使用12V的三芯锂离子电池,通过降压转换器把该电压转换到1.5V来为GPU供电。在小功率和大功率模式,GPU的耗流量分别为0.5A和8.5A。保证GPU正常工作的电压范围为1.5V +/-75mV。假设降压转换器的电感值初选为2.2微亨,解耦电容为330微法并带有4毫欧的ESR,那么:

  V(SUB/)in(/SUB) = 12 V,V(SUB/)in(/SUB)= 1.5 V,L = 2.2 μH,C = 330 μF,R(SUB/)esr(/SUB)= 5 mΩ,I(SUB/)1(/SUB)=0.5 A,I(SUB/)2(/SUB) = 8.5 A

  把上述参数代入方程4和方程7,在加载过程(负载电流从0.5A跃升到8.5A)中,输出电容阵列上的最大电压降发生在t=0.36微秒,其值为32.9mV。

  在卸载过程(负载电流从8.5A跃降到0.5A)中,输出电容阵列的最大电压提升发生在t=10.4微秒,其值为144.0mV。

  重复试算可得到满足1.5V +/-75mV电压要求的最优值:C=720微法,R(SUB/)esr(/SUB)=6.2微欧。

  陶瓷电容器ESR小但电容量也小,但陶瓷电容器的低ESR效应只在它保有能量期间(按C(dv/dt)=I计算)有效。电解电容器ESR大且电容量大,但电解电容器的大电容效应只表现在其谐振频率内(按R(SUB/)esr(/SUB)C计算)。聚合物钽电容器处于两者之间??ESR相对较小,电容相对较大。

  用哪些器件来产生720微法电容和6.2毫欧ESR呢?可用两个330微法30毫欧(ESR)聚合物钽电容器和6个10微法2毫欧(ESR)陶瓷电容器构成一个电容器阵列。

  在电容器阵列中,应根据器件的谐振频率递减的次序来安排电容器与负载的相对位置。陶瓷电容谐振频率最高,应最接近于负载,聚合物钽电容其次,电解电容离负载最远。

  从方程4和方程7可以看出,选用小电感更有利于减少电压偏离。把电感从2.2微亨减小到1.2微亨将可把电容值从720微法削减到390微法。对降压转换器来说,电感值是一个重要参数,应综合考虑效率优化、电感纹波电流和输出电容阵列计算等因素。

关键字:开关电源  转换器  电容阵列 编辑:探路者 引用地址:设计开关电源转换器中电容阵列的数学方法

上一篇:一种太阳能路灯智能控制系统的设计方案
下一篇:针对便携式设备充电电路的分立器件保护方案

推荐阅读最新更新时间:2023-10-17 15:08

基于UC3863控制的LLC谐振变换器的设计及仿真
随着通信产品的小型化发展,对开关电源的性能要求方面也越来越高,促使电源向高频、高可靠、低耗和小型化的趋势发展,同时促进开关电源在高新技术领域更加广泛的应用。在开关电源向高频化和小型化的发展过程中,其中开关损耗问题是制约其发展的一个重要因素,软开关技术能够较好的解决开关损耗的问题。 LLC谐振变换器以其拓扑结构简单,可以实现初级开关管零电压开通和次级输出整流管的零电流关断,开关损耗低、可高频化,副边整流二极管电压应力低,在高输出电压应用情况下可以实现较高的效率等优点成为近年来的一个研究热点。但是LLC谐振变换器的拓扑在其实际的应用过程中还存在着许多问题,当出现电路启动、负载过流或短路情况时如何限制电路中的电流以防止电路损坏就是
[单片机]
基于UC3863控制的LLC谐振变换器的设计及仿真
开关电源DC/DC变换器拓扑结构全集
 给出六种基本 DC/DC变换器 拓扑 依次为buck,boost,buck-boost,cuk,zeta,sepic变换器    半桥变换器也是双端变换器,以上是两种拓扑。 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。 半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。
[电源管理]
<font color='red'>开关电源</font>DC/DC变换器拓扑结构全集
TOPSwitch—GX在开关电源中的应用
摘要:TOPSwitch—GX器件是一种PWM/MOSFET二合一的新型集成芯片,它采用与TOPSwitch相同的电路,扩展了TOPSwitch系列的功率范围,还集成了多项新功能。介绍了一种用TOP249Y设计的封闭式电源,使用了TOPSwitch—GX的线路检测功能和外部限流功能,设计新颖,具有一定的实用性。 关键词:TOPSwitch—GX器件;线路检测;外部限流 1引言 从20世纪70年代以来,大规模集成电路技术的迅速发展,使开关电源有了质的飞跃,掀起了电源产品高频化、小型化、模块化的浪潮。对于200W以下的开关电源,与其它电路相比,应用TOPSwitch所需的元器件最少。目前开关电源的体积主要还是由电容、电感和变压器
[电源管理]
基于高性能单片机的功率直流开关电源的设计
   1 引言   直流稳压电源已广泛地应用于许多工业领域中。在工业生产中(如电焊、电镀或直流电机的调速等),需要用到大量的电压可调的直流电源,他们一般都要求有可以方便的调节电压输出的直流供电电源。目前,由于开关电源 效率高,小型化等优点,传统的线性稳压电源、晶闸管稳压电源逐步被直流开关稳压电源所取代。开关电源主要的控制方式是采用脉宽调制集成电路输出PWM 脉冲,采用模拟PID调节器进行脉宽调制,这种控制方式,存在一定的误差,而且电路比较复杂 。本文设计了一种以ST 公司的高性能单片机μpsd3354 为控制核心的输出电压大范围连续可调的功率开关电源,由单片机直接产生PWM 波,对开关电源的主电路执行数字控制,电路简单,功能强
[电源管理]
如何提高低成本开关电源的效率?
  低电流开关稳压器IC通常使用达灵顿管作为输出开关。在这种情况下,电源转换效率可以借由两个便宜的元器件得到提高。   为使之成为可能,芯片上应当有一个针对驱动器晶体管Q1集电极的单独引脚(图1)。在启动时,D1针对Q1的集电极电流形成一条通路。此后,D1和C1形成一个电流累加整流器,增加Q1的集电极电压和电流,从而降低闭合开关Q2上的电压降。        图1:为了实现用两个元器件提升电源转换效率,芯片上应有针对驱动器晶体管Q1集电极的单独引脚。   该电路的另一优点是能在输入电压较低的情况下工作。由于驱动器集电极上的电压有所上升,电路可支持更宽的输入范围。   C1的值取决于开关频率。一般情况下,数值范围为47nF~150
[电源管理]
如何提高低成本<font color='red'>开关电源</font>的效率?
开关电源中功率MOSFET的驱动技术荟萃
功率MOSFET以其导通电阻低和负载电流大的突出优点,已经成为开关电源(switch-mode Power supplies,SMPS)整流组件的最佳选择,专用MOSFET驱动器的出现又为优化SMPS控制器带来了契机。那些与SMPS控制器集成在一起的驱动器只适用于电路简单、输出电流小的产品;而那些用分立的有源或无源器件搭成的驱动电路既不能满足对高性能的要求,也无法获得专用单片式驱动器件的成本优势。专用驱动器的脉冲上升延时、下降延时和传播延迟都很短暂,电路种类也非常齐全,可以满足各类产品的设计需要。 大电流MOSFET栅极驱动器 为中间总线架构(IBA)系统的优化的POL DC-DC转换器、Intel及AMD微处理器的内核稳压器
[电源管理]
汽车音响开关电源原理
    汽车已开始进入我国家庭,性能优越的大功率汽车音响越来越受到青睐。以往汽车音响用电是直接取用12V铅蓄电池,这样汽车点火产生的脉冲及其它干扰便直接成为音响噪音的主要来源。12V低电压单电源也使音响输出功率受到限制,功放电路也只能用OTL电路,频响特性较差。随着元器件的发展和技术的进步,开关电源已完全能应用于汽车音响。它能提供电压较高的双电源,并能抑制各种噪音的窜入,功放电路也采用OCL电路,使汽车音响效果真正上了档次,汽车音响应用开关电源符合技术发展的需要。     图1为汽车音响开关电源电路,该电路主要由两片集成电路TL494和KIA358、驱动管Q702和Q703、开关管M704~M709、变压器、输出整流器和滤波器
[嵌入式]
TEA1504开关电源低功耗控制IC
摘要:介绍了Philips公司开发的Green Chip TM绿色芯片TEA1504的内部结构及工作原理,该控制芯片集成了开关电源的PWM控制、高低频模式转换、栅极驱动和保护等功能,同时上有瞬态响应快,启动电流过冲小,待机功耗低等特点。 关键词:开关电源 TEA1504 脉宽调制 低功耗 1 前言 开关电源以其供电效率高,稳压范围大,体积小被越来越多的电子电器设备所采用,在大屏幕电视机、监视器、计算机等电器的待机或备用(stand-by)状态会继续耗电,为此,Philips公司采用BiCOMS工艺开发出了被之为Green Chip TM(绿色芯片)的高压开关电源控制芯片。该类集成芯片(IC)的稳压范围为90~276V(AC)
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved