DC/DC设计原理、经验与应用技巧总结

最新更新时间:2013-03-17来源: 21IC关键字:DC/DC  设计原理  应用技巧 手机看文章 扫描二维码
随时随地手机看文章

“绿色”系统的发展趋势不仅意味着必须采用环保元器件,还对电子产业提出了节能的挑战。能源之星(EnergyStar)和80+等组织都已针对各式消费电子(特别是计算类)颁布了相关规范。对当前的消费者而言,更长的电池寿命也是个十分吸引的特性。因此,更长的电池寿命、更小的外形尺寸及各国政府推出的新法规都在要求必需谨慎选择电源元件,尤其是对板上的DC-DC转换器。这表示着新平台的功率密度、效率和热性能必须大幅提高。
众所周知,设计理想的DC-DC转换器涉及到众多权衡取舍。功率密度的提高通常意味着总体功耗的增加,以及结温、外壳温度和PCB温度的提升。同样地,针对中等电流到峰值电流优化DC/DC电源,几乎也总是意味着牺牲轻载效率,反之亦然。本人结合自己十多年的DC-DC应用经验,谈谈DC-DC转换器的基本原理和设计经验技巧。
DC-DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。降压式DC/DC变换器基本工作原理电路如图1所示。VT1为开关管,当VT1导通时,输入电压Vi通 过电感L1向负载RL供电,与此同时也向电容C2充电。在这个过程中,电容C2及电感L1中储存能量。当VT1截止时,由储存在电感L1中的能量继续向 RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。二极管VD1为续流二极管,以便构成电路回路。输出的电压Vo经R1和 R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

图1、降压式DC/DC变换器基本工作原理电路

DC-DC设计技巧
一.DC-DC电路设计至少要考虑以下条件:
1.外部输入电源电压的范围,输出电流的大小。
2. DC-DC输出的电压,电流,系统的功率最大值。
二.基于以上两点选择PWM IC要考虑:
1. PWM IC的最大输入电压。
2.PWM开关的频率,这一点的选择关系到系统的效率。对储能电感,电容的大小的选择也有一定影响。
3.MOS管的所能够承受的最大额定电流及其额定功率,如果DC-DC IC内部自带MOS,只需要考虑IC输出的额定电流。
4. MOS的开关电压Vgs大小及最大承受电压。
三.电感(L1),二极管(CR1),电容(C2)的选择
1. 电感量:大小选择主要由开关频率决定,大小会影响电源纹波;额定电流,电感的内阻选择由系统功耗决定。
2. 二极管:通常都用肖特基二极管。选择时要考滤反向电压,前向电流,一般情况反向电压为输入电源电压的二倍,前向电流为输出电流的两倍。
3. 电容:电容的选择基于开关的频率,系统纹波的要求及输出电压的要求。容量和电容内部的等效电阻决定纹波大小(当然和电感也有关)。
如何得到一个电源纹波相对较小、对系统其他电路干扰相对较小,而且相对稳定可靠的DC-DC电路,需要对以上电路的原理做如下修改:
1.输入部分:电源输入端需要加电感电容滤波。目的:由于MOS管的开关及电感在瞬间的变化会造成输入电源的波动,尤其是在系统耗电波动较大时,影响更为明显。
2.输出部分:
(1)假定C2的选择的100uF是正确的,我们想得到更小的纹波,可以将100uF的电容改成两颗47uF的电容(基于相同类型的电容);如果100uF电容采用的是铝电解,可以在原来的基础上加一颗10uF的磁片电容或钽电容。
(2) 在输出端再加一颗电容和一颗电容对原来的电源做一个LC滤波,会得到一个纹波更小的电源。

PCB布线时,应注意几点:
1. 输入电源与MOS的连线要尽可能的粗。
2. Vgs也要粗一点,千万不要以为粗细没关系,(注:一般系统功率相对较低时,输出电流不大,粗细的影响不明显)关键时刻会影响电源的稳定性。
3. CR1, L1尽量靠近Q1。C2尽量靠近L1。
4. 反馈电阻的线尽量远离电感L1。
5. 反馈电压的地与系统的地尽量的近,保持在一个电位上。
6. CR1的地线千万要粗,在MOS的打开的时间里,L1的电流是由CR1的通路提供,即由地流向L1。

DC-DC应用技巧
在常见的DC/DC变换器中,有很多的应用技巧是不为工程师所掌握的. 现拿 UTC P3596应用电路来作一个说明,与诸位分享交流: 

DC-DC应用技巧一
当我们用这个电路做好 Buck 以后,电感量达到其 Spec. 的要求,却发现负载调整率过低.这种情况下,很多同学都认为芯片品质问题等等. 其实由于芯片的半导体工艺不能使内部的运放的带宽(bandwidth)做的很大.所以我们所做的要么就是屏蔽内部的运放(象我们常见的384X电路 1,2pin的连接方法);要么就是外部来补偿,在 R1 上并一个无极性电容加速内部运放对输出电压的反应. 
分析也不是仅针对UTC P3596 的芯片,适用于全部的DC/DC,及其它的开关电源. 
开关电源作为一个反馈系统,当我们选用一个运放来做PID(比例积分微分),而我们选用运放要求的带宽要有足够的大,相应的相位裕度也比较大(当然在一定的性价比条件下). 用于适应响应反馈中采样的低频至高频的信号! 
我们做低成本的充电器,可以用稳压管. 功率再大一些,就选用 TL431(内部一个运放加晶体管). 对于精度要求更好的,我们肯定不会用TL431或稳压管. 呵呵~~~~  结论还是自己分析会比较好!!! 对于很多开关电源工程师来说,一但调试搞不定,就会说补偿没调好/变压器没绕好~~~ 原因为何?
我们首先看一下,UC384X 内部结构图(注意看1/2脚之间的运放): 
 
如果我们把2脚接地,用1脚作为反馈端;这实际上,就是把这个内部的运放接成一个跟随器.就是把这个运放给屏蔽了!

DC-DC应用技巧二
在很多情况下,突然撤去负载或输入时,导致 Buck 电路内部的MOSFET 损坏. 
分析原因:基本上是输出级的能量无处泄放,一种是自然放电,一种就会反灌! 
基本上解决的方法就是在这样的 Buck 电路中,输入级至输出级反方向接一个二极管. 
延伸:为什么我们在开关电源中所应用的MOSFET 中会集成一个反向的体二极管啦!同样我们在用 VR(7805/7808 etc.)尽量会加一个反向二极管.

DC-DC应用技巧三
也有很多人说,短路电流大或者短路效果不明显. 
碰到这样的可以尝试换一个线径来绕制这个电感,因为不同的线径在相同的磁环(磁棒)上都可以绕制到需求的电感量.但不同的线经会产生不同的 ESR(等效电阻),而这个电阻是总负荷的一部分!

关键字:DC/DC  设计原理  应用技巧 编辑:探路者 引用地址:DC/DC设计原理、经验与应用技巧总结

上一篇:大型医疗设备配备UPS问题结合实例
下一篇:1A 高稳定度恒流源的试制

推荐阅读最新更新时间:2023-10-17 15:15

移相全桥ZVS变换器的原理设计
    摘要: 介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW移相全桥零电压高频通信开关电源。     关键词: 移相全桥  零电流开关  零电压开关  准谐振 1 引言     传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW)的情况,以及电源电压和负载电流变化大的场合。其特点是开关频率固定,便于控制。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到1MHz级水平。为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导
[应用]
应用于新能源发电的双向DC/DC变流器研究及仿真验证
由于环境和经济原因,新能源已经引起了全球范围的极大关注。目前所使用的新能源包括太阳能、风能、地热能、潮汐能、氢能和生物能等。由于绝大多数新能源以电能形式产生,因此电能变换技术的创新对于使用新能源时的成本就变得非常关键。 虽然对可再生能源的研究取得了一定进展,但是也存在一些内在问题。其一为间歇性,即可再生能源输出的功率不是恒定的;其二为相对于电力负荷,可再生能源反应比较慢。通常,可再生能源与储能单元结合可增强系统性能或实现附加的功能。 作为一种新颖的电力电子变流器,多端口双向DC/DC变流器越来越多地应用于以燃料电池、太阳能和风能为代表的新能源发电系统。它可以有效地将储能装置、新能源发电设备以及负载结合起来。同时,还可以克服新能源发
[电源管理]
<font color='red'>应用</font>于新能源发电的双向<font color='red'>DC</font>/<font color='red'>DC</font>变流器研究及仿真验证
TI推出面向个人电子产品的DC/DC 转换器
采用芯片级封装的超小型转换器支持大功率 4 核及 8 核处理器,可延长智能手机与平板电脑的电池运行时间。 2014 年 3 月 10 日,北京讯---日前,德州仪器 (TI) 宣布推出可满足 4 核及 8 核处理器电源需求的业界最小型 15 安培多相位降压转换器,为智能手机与平板电脑延长电池运行时间。该款最新 LP8755 器件不仅可实现 50 平方毫米的总体解决方案尺寸,而且还可通过 2.5V 至 5V 输入在 90% 的高效率下支持高达 15A 的电流。 具有集成型 FET 的 LP8755 转换器不但使用 2 个 I2C 接口管理动态电压缩放,还采用自动相位增加及削减技术,在整个宽输出
[手机便携]
TI推出面向个人电子产品的<font color='red'>DC</font>/<font color='red'>DC</font> 转换器
德州仪器推出 ADC 驱动器,将性能功耗比提升8倍
2012 年 3 月 30日,北京讯 日前,德州仪器 (TI) 宣布推出全差动模数转换器 (ADC) 驱动器,比同类器件性能功耗比提高 8 倍以上,重新定义了低功耗放大器市场。THS4531 全差动放大器静态电流仅为 250 uA,带宽达 36 MHz,可充分满足流量计与便携式医疗设备等便携式高密度系统的高性能与超低功耗需求。如欲了解更多详情或订购样片,敬请访问:www.ti.com.cn/product/cn/ths4531。 THS4531 的主要特性与优势: • 36 MHz 带宽、220 V/us 的压摆率以及 0.01% 到 150 ns 快速建立时间,可为驱动高采样率转换器缩短数据采集时间; • 0.5 uA 的
[模拟电子]
WWDC爆发乔布斯“怨念” 苹果向谷歌全面开火
移动互联网时代,苹果想做PC时代的微软(微博),但它有一个像PC时代微软一样强劲的对手谷歌。   史蒂夫·乔布斯去世前跟传记作家沃尔特·艾萨克森说过,他愿意因为Android跟谷歌来一场战争,如今,乔布斯的预言终于成为现实。   在刚刚结束的苹果一年一度的WWDC(苹果全球开发者大会)上,苹果全面向谷歌开战:不仅是针对Android系统,而且试图对iOS、网页和移动设备“去搜索化”,全面瓦解谷歌赖以生存的基础。   这场代表App端与Web端进行的封闭与开放的战争,或将决定谁是真正的王者。   苹果产品线全方位开火   事实上,在2007年以前,谷歌和苹果一直保持良好的关系。当苹果借助
[手机便携]
WW<font color='red'>DC</font>爆发乔布斯“怨念” 苹果向谷歌全面开火
基于DisplayPort接口的HDCP软件实现及应用
  DisplayPort接口标准是由视频电子标准协会(VESA)批准的,一个开放的、可扩展的标准。其为降低PC平台和元件的成本及推动通用数字接口而开发。DisplayPort实现了显示设备用一条电缆与数字视频信号连通的高清数字音频,并实现真正即插即用的强大的互操作性,这些使现有的数字显示互连非常具有成本效益。为了提高其与现有数字接口的互通性,DisplayPort的1.1版本增加了兼容支持高带宽数字内容保护(HDCP)来支持HDMI和DVI采用的HDCP技术。   DisplayPort   1 DisplayPort接口   DisplayPort体积小,传输结构利用了类似PCI Express的电气层,采用“
[嵌入式]
解决开关模式DC-DC转换器的噪声和空间问题的PowerSoC
引言 转换效率促使FPGA系统设计师从线性稳压器转向使用开关模式直流-直流转换器。虽然开关模式直流-直流转换器能够显着提高效率,但却需要更复杂的结构设计,更多的部件数量和更大的覆盖区;更为明显的是,对高速输入/输出单元来说,开关模式直流-直流转换器就等于噪声源。 本文描述了开关模式直流-直流转换器的各种噪声分量,同时说明PowerSoC如何将各分量降至最低。本文也进一步用设计示例来说明PowerSoC如何令高速输入/输出单元具有与线性稳压器媲美,甚至更优越的性能。 降压型直流-直流转换器简单模型 一对MOSFET开关、电感器,以及输入和输出滤波电容即可组成一个简易的同步开关模式直流-直流转换器模型。图1为转换周期中
[电源管理]
解决开关模式<font color='red'>DC</font>-<font color='red'>DC</font>转换器的噪声和空间问题的PowerSoC
基于K9F6408U0A和SPDS202A的数码录音系统设计原理
K9F6408U0A 是三星公司生产的与非型64兆位快闪存储器,它具有工作电压低、擦写速度快、体积小等优点。SPDS202A的台湾凌阳公司生产的语音芯片。文中介绍了以SPDS202A为核心的数码录音系统,同时介绍了实现两片 K9F6408U0A 之间拷贝功能的具体方法。最后给出了相关的硬件接口及软件程序。 1 K9F6408U0A 的性能简介 K9F6408U0A 的最大优点在于其命令、数据和地址均可通过8条I/O口线与主控制器进行通信。这样就大大简化了系统的连线,增强了系统的稳定性。除8条I/O口线外, K9F6408U0A 还包括以下几条控制线,从而可方便地实现系统主控制器对 K9F6408U0A 的控制。它们分别为:
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved