教你制作DC/AC逆变器 电路分析及性能测试

最新更新时间:2013-12-04来源: 电源网关键字:逆变器  电路分析 手机看文章 扫描二维码
随时随地手机看文章

这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。

工作原理

这里我们将详细介绍这个逆变器的工作原理。

这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。 其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。场效应管驱动电路

这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。

由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。

下面简述一下用C-MOS场效应管(增强型MOS 场效应管)组成的应用电路的工作过程。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。

由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程。工作原理同前所述。这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。这里需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。

制作要点

逆变器用的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏-源极间电阻为25毫欧。此时如果通过10A电流时会有2.5W的功率消耗。N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏-源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。所以在考虑散热器时应注意这点。下图展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接法。尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。

  逆变器的性能测试

这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。其测试结果见电压、电流曲线关系图。可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。以负载为60W的电灯泡为例:

假设灯泡的电阻不随电压变化而改变。因为R灯=V2/W=2102/60=735Ω,所以在电压为208V时,W=V2/R=2082/735=58.9W。由此可折算出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时输出电压为200V。

关键字:逆变器  电路分析 编辑:探路者 引用地址:教你制作DC/AC逆变器 电路分析及性能测试

上一篇:光伏逆变器之参数解密 如何选择发电量高的逆变器
下一篇:太阳能发电MCU的光伏控制系统给与电网稳定保障

推荐阅读最新更新时间:2023-10-12 22:31

智能交错—实现高效 AC/DC 电源的先进 PFC 控制器
交错是一种特殊的并联方式,即在两个或多个功率级 (通常称之为相位或通道) 之间存在独特的相位关系,为了保持两级设计所拥有的全部纹波电流消除优势,必须让各个通道彼此间相差180°同差。由于每个通道都是针对处理50%功率而设计的,故同步的中断或失败,尤其是在负载超过最大额定电流的50%时,就可能造成整个设计的崩溃。 FAN9612采用飞兆半导体专有的同步方案Sync-Lock,可确保软启动、软中止(Soft-Stop)期间以及所有瞬态和稳态工作条件下近乎完美的180°同步。如果某个故障模式导致一个信道无法工作,内部重启动定时器会被激活,相当于高效的功率限制,可防止此通道提供全额定功率。所有这些同步和安全功能都完全由FAN9612处理,无
[电源管理]
智能交错—实现高效 <font color='red'>AC</font>/<font color='red'>DC</font> 电源的先进 PFC 控制器
太阳能发电系统单元逆变器的控制板设计
随着人们对环境问题的关注,地球对于清洁 能源 的要求也越来越高。本公司一直致力于研发太阳能发电的功率调节系统(PCS)。 结合太阳能发电系统 控制 板的研发案例,针对并联多个太阳能 电池 板的系统进行调整的问题,本文就降低成本和增设并联个数的方法进行介绍。 1 系统概要 图1为大规模太阳能发电系统的原理框图。 该系统的特点是,太阳能电池板和单元逆变器分组与系统相连(AC连接),将系统保护等信息汇总后作为信号发送到主控制器,并由此控制器控制各单元逆变器(通过RS485通信连接到菊花链连接)。 每个单元逆变器的控制部分如图2所示。 通过使用本公司的标准DSP基板(PE—PR0/C32),
[模拟电子]
优化高电压IGBT造就高效率太阳能逆变器
  随着绿色电力运动势头不减,包括家电、照明和电动工具等应用,以至其他工业用设备都在尽可能地利用太阳能的优点。为了有效地满足这些产品的需求,电源设计师正通过最少数量的器件、高度可靠性和耐用性,以高效率把太阳能源转换成所需的交流或者直流电压。   要为这些应用以高效率生产所需的交流输出电压和电流,太阳能逆变器就需要控制、驱动器和输出功率器件的正确组合。要达到这个目标,在这里展示了一个针对500W功率输出进行优化,并且拥有120V及60Hz频率的单相正弦波的直流到交流逆变器设计。在这个设计中,有一个DC/DC电压转换器连接到光伏电池板,为这个功率转换器提供200V直流输入。不过在这里没有提供太阳能电池板的详细资料,因为那方
[电源管理]
光伏组件参数解读和逆变器配比
引言:本文为深圳古瑞瓦特新能源股份有限公司原创作品。 光伏组件是光伏电站最重要的设备之一,成本占了并网系统50%左右,组件的技术参数对系统设计非常重要,只能读懂组件参数,才能正确配置光伏逆变器,下面以多晶硅光伏组件为例,解释光伏组件的关键参数。 一、光伏组件技术规格书中的关键参数 1.功率 我们常说265Wp光伏组件。下表的“p”为peak的缩写,代表其峰值功率为265W。所有的技术规格书中都会标注“标准测试条件”的。“0~+5”代表是正公差,265W的组件功率范围在265W到270W之间为合格品,下图为常州天合的多晶光伏组件技术规格书一部分。   只有在标准测试条件(辐照度为1000W/m2,电池温度25℃)时,光伏
[新能源]
万银科技:持续深入研发 将逆变器创新推向“风口”
说到“光伏逆变器”,长期以来业内对组串式与集中式逆变器的故障率、可靠性众说纷纭,争议不断。多数情况下,组串式逆变器厂家按照25年系统可靠运行设计,采用自然散热方式;集中式逆变器方案普遍采用直通风式散热方案,而万银科技作为国内光伏领域一家年轻的逆变器生产企业,独创研发推出预警式逆变器系列,可保持IGBT温度小于75℃,从根本上有效降低了设备故障率,降低了运维成本,得到了市场的考验和认可。 近期,在万银科技举办的媒体发布会上,中国电科院新能源研究所太阳能发电实验室与检测室主任张军军对万银科技预警式逆变器在行业中的领先地位以及技术创新给予充分肯定,他认为,未来大功率逆变器在光伏市场是大势所趋,万银科技有着巨大的市场空间。 独树一帜 站
[新能源]
液晶显示之殇—电源篇
CCFL液晶电视我们一般分两组电源,一组就是所谓的电源板,它一方面负责给主板和其他外设供电,另一方面负责给背光驱动供电;另一组就是我们通常所说的高压板(学名叫逆变器,Inverter),主要用来驱动CCFL背光源。   大概介绍下电源板吧,与其他通用电源一样,220V AC输入,经过全桥整流,PFC功率因数校正,后面通常是用反激架构,通过几组不同匝数比的原副边绕组得到需要的几组电压,通常会有这几组电压:   a)        24V 主要提供液晶屏内部背光源驱动板供电电压; b)        12V 1)连接主板,再通过LVDS连线直接供电屏的逻辑模块(Tcon);2)通过降压为8V给伴音板供电,再降压
[电源管理]
液晶显示之殇—电源篇
逆变器介绍及原理
  逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成。广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等。   利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。例如:应用晶闸管的电力机车,当下坡时使直流电动机作为发电机制动运行,机车的位能转变成电能,反送到交流电网中去。又如运转着的直流电动机,要使它迅速制动,也可让电动机作发电机运行,把
[电源管理]
PWM逆变器死区效应的补偿
    摘要: 在PWM三相逆变器中,为防止同一桥臂上的两个功率器件的直通短路而注入的死区时间,将对逆变器输出电压带来一定的误差。本文对死区效应的产生机理进行了分析,给出了两种补偿方法。     关键词: PWM逆变器  死区效应  补偿 1 引言 在PWM三相逆变器中,由于开关管存在一定的开通和关断时间,为防止同一桥臂上两个开关器件的直通现象,控制信号中必须设定几个微秒的死区时间。尽管死区时间非常短暂,引起的输出电压误差较小,但由于开关频率较高,死区引起误差的叠加值将会引起电机负载电流的波形畸变,使电磁力矩产生较大的脉动现象,从而使动静态性能下降,降低了开关器件的实际应用效果。 本文从分析死区效应的产
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved