数字控制器提高DC/DC效率的策略分析

最新更新时间:2014-03-22来源: 21世纪电源网关键字:数字控制器  DC/DC 手机看文章 扫描二维码
随时随地手机看文章

随着能源价格的上涨和各项“环保”计划的成功开展,私营公司和政府监管部门对电源制造商的要求逐渐提高。欧盟委员会(欧盟(EU)的执行机构)和美国环境保护署(EPA)对服务器电源的要求进一步升级,现已涵盖各种负载级别的效率以及待机功耗。服务器集群运营商也对电源制造商提出了类似要求。

   由于法规如此严格,并且还有许多法规即将出台,电源制造商正逐渐转向数字控制。在全数字解决方案中,完全可编程的数字信号控制器(Digital Signal Controller,DSC)可直接生成用于控制功率电路级的PWM 信号。同时,控制器还能处理系统管理任务,例如数据记录、通信和故障报告。这样,电源设计人员可以在DSC 中编写高级控制方法,而在模拟设计中,这即便可以实现也是极为困难的。设计人员可利用此功能灵活地实现最终客户所需的数据记录和通信标准。

   相移全桥(Phase-Shifted Full-Bridge,PSFB)拓扑是一种有潜力满足未来电源效率需求的直流-直流转换器。DSC的灵活性使得不稳定的PSFB 拓扑更易于管理,并可实现进一步提高PSFB效率的先进技术。

   移相全桥拓扑的必然性

   下面我们将讨论高频工作所必需的简单全桥拓扑,然后讨论效率提高策略。

   全桥转换器

   如图1 所示,全桥转换器使用四个开关(Q1、Q2、Q3 和Q4)进行配置。对角开关Q1、Q4 和Q2、Q3 同时导通时,将在变压器的初级绕组上提供完整的输入电压(VIN)。在转换器每半个周期中,对角开关Q1 和Q4 或Q2 和Q3 导通,并且变压器的极性会在每半个周期中反转。在全桥转换器中,给定功率下的开关电流和初级电流与半桥转换器相比将减半。这种电流减少使得全桥转换器适用 于高功率等级。但是,对角的开关采用硬开关,当其导通和关断时会导致较高的开关损耗。

   过去,由于合适的控制器尚未出现,电源工程师不得不使用效率较低的硬开关电源转换方法。这些方法的损耗随频率的增加而增加,因而限制了工作频率,进而限制了电源高效供电的能力。                                              

                                                                                            图1:全桥转换器

   软开关全桥(PSFB)拓扑

   利用现有DSC,设计人员现在可考虑使用更高的工作频率来减少电源中磁性元件和滤波电容的数量。频率的升高会导致硬开关电源转换器(例如传统全桥转换器)中产生更高的开关损耗。一种较好的替代方案是选择相对复杂的软开关方法来减少开关损耗并提供较高的功率密度。

   PSFB 转换器是一种软开关拓扑,使用寄生电容(例如MOSFET 和IGBT 等开关器件的输出电容)和变压器的漏电感来实现谐振转换。这种谐振转换可以使开关器件在接通时两端电压为零,从而消除其接通时的开关损耗。

   PSFB 转换器已广泛用于转换器的功率密度和频率至关重要的电信和服务器应用中。PSFB 转换器的常规工作在许多文章中都有介绍,我们将在此基础上展示DSC 如何进一步提高性能。

                                

                                                    图2:相移全桥转换器

   带传统同步MOSFET栅极驱动的相移全桥转换器

   为确保用户安全以及符合监管机构制定的规则,大多数直流-直流转换器设计有隔离变压器。额定值较高的电源在初级设计有PSFB 拓扑,在次级设计有全波同步整流器,以实现较高效率。

   在PSFB 转换器中,如果使用传统方法控制的同步MOSFET 配置,则MOSFET 的Q1、Q3 或Q2、Q4 应处于导通状态。此时,没有任何功率从初级传输到次级,并且MOSFET Q5 仍处于导通状态。   由于转换器的次级侧存在电感(Lo),因此输出电感中的能量在MOSFET Q5 和变压器(Tx)的次级线圈之间循环。电流会通过MOSFET 的通道或通过MOSFET的内部二级管持续流经变压器次级线圈。由于电流会从次级反射到初级,所以在初级的零状态(初级到次级无任何能量传输)期间将存在环流,这会导致转换器中出现损耗。与额定输入电压的情况相比,这些环流损耗在较高的电压下尤其明显。此外,为避免跨导,在Q5 和Q6 MOSFET 栅极驱动之间有意地引入一个死区。在此期间,任何同步MOSFET均不会导通。因此,电流将流经MOSFET内部二极管。与MOSFET的Rds(ON)相比,这些MOSFET 内部二极管具有高正向压降,即(VF * I)》(I2rms*Rds(on))。

   通过叠加栅极驱动信号,可防止传统的同步栅极驱动中产生较高损耗,这将在下一部分中介绍。

             

                                          图3:同步MOSFET 栅极驱动的传统配置

   同步MOSFET 栅极驱动信号的叠加

   通过叠加同步MOSFET的PWM栅极驱动信号,可避免在变压器初级侧的零状态期间发生损耗。这将在以下三个方面提高电源效率。

   首先,在中心分接的全波整流器中,叠加同步MOSFET 的栅极驱动信号将消除变压器次级中心分接线圈中的磁通,这样在变压器次级和初级之间实际上不会有磁通。

   其次,两个同步MOSFET 和两个变压器中心分接线圈同时导通,而不是一个同步MOSFET 和一个中心分接变压器导通。因此,次级电流将只有一半的有效电阻,与只有一个同步MOSFET 导通的情况相比,损耗会降低一半。

    

                                 图4:叠加同步MOSFET 栅极驱动信号以提高效率   最后,在传统的开关方法中,有意引入的死区可能为开关周期的10%,并且在该死区期间,高次级电流将流经MOSFET的高正向压降内部二极管。通过配置同步MOSFET的PWM 栅极驱动信号叠加,高次级电流可流经MOSFET通道。在这种情况下,将只有Rds(ON)损耗,其与死区中MOSFET内部二极管导致的损耗相比非常小。对于具有电信输入(36 至76 VDC)的系统,通过叠加同步MOSFET栅极驱动信号,直流-直流转换器的效率将提高3 - 4%.

   实现这些技术需要灵活的具有完全独立PWM 输出的电源控制器。DSC提供了灵活性以及PWM外设,可轻松实现此技术和其他效率提升技术。

   结论

   PSFB 拓扑具有实现现代电源所需效率的潜力。数字控制使设计人员能够非常精确地控制PSFB拓扑和实现高级控制技术(例如叠加同步MOSFET)。新拓扑、新技术及新理念正在推动电源进入二十一世纪。数字控制器已经为未来的电源需求做好了准备。

关键字:数字控制器  DC/DC 编辑:探路者 引用地址:数字控制器提高DC/DC效率的策略分析

上一篇:麦瑞将预展首款直流-直流多模控制器
下一篇:具有电源系统管理功能的高性能单相DC/DC控制器

推荐阅读最新更新时间:2023-10-12 22:37

750mA、42VIN 同步降压型 DC/DC 转换器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 和马萨诸塞州诺伍德 (NORWOOD, MA) – 2017 年 6 月 19 日 – 亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司 (Linear Technology Corporation) 推出 750mA、42V 输入同步降压型开关稳压器 LT8607。该器件采用独特的同步整流拓扑,在 2MHz 切换时可提供 93% 的效率,从而使设计师能够避开关键噪声敏感频段 (例如 AM 无线电频段),同时实现占板面积非常紧凑的解决方案。突发模式 (Burst Mode®) 工作在无负载的备用情况下可保持静态电流低于 3µA,从而使该
[电源管理]
750mA、42VIN 同步降压型 <font color='red'>DC</font>/<font color='red'>DC</font> 转换器
1W超薄隔离型DC/DC模块及其应用
为提高通信设备或装置在信号传输中的抗干扰能力,提高通信的可靠性及满足一些仪表、仪器在复杂环境中的测量精度、提高测量的可靠性,往往在其部分 电路 或器件上采用了输出稳压的隔离型 电源 模块供电。这样不仅提高了 电源 的输出电压精度、减少纹波噪声电压;并且,由于采用了不共地的隔离电源,可以有效地抑制电磁干扰,消除接地环路的干扰,保护系统 电路 免受外部网络的影响。在便携式仪器、仪表及通信装置中,采用超薄隔离型DC/DC模块,不仅占PCB面积小,并且可靠性高,是最佳的选择。 2008年,广州金升阳公司在DC/DC模块上有新的突破,开发出1W超薄隔离型DC/DC模块系列。该系列为定压输入,有非稳压输出及稳压输出两类。本文介绍该系列中
[电源管理]
STM8 ADC转换模式-------单次模式
STM8单片机ADC支持5种转换模式:单次模式,连续模式,带缓存的连续模式,单次扫描模式,连续扫描模式。 单次模式 在单次转换模式中,ADC仅在由ADC_CSR寄存器的CH 选定的通道上完成一次转换。该模式是在当CONT位为0时通过置位ADC_CR1寄存器的ADON位来启动的。 一旦转换完成,转换后的数据存储在ADC_DR寄存器中,EOC(转换结束)标志被置EOCIE 被置位将产生一个中断。 其中ADC结果的读取可以采用查询模式也可以采用中断模式。 查询模式代码如下: #include adc.h #include main.h u16 DATAH = 0; //ADC转换值高8位
[单片机]
基于DSP和CPLD技术的多路ADC系统的设计
引言 --- 随着现代电子技术的应用和发展,数字信号处理的内容日益复杂,而ADC是实现从模拟到数字转换的一个必然过程。针对这种情况,利用数字信号处理器和可编程逻辑器件提出了多路ADC系统的设计方法,实现了对动态多路模拟输入信号的采样传输以及处理,简化了电路设计,可编程逻辑器件使得系统的通用性和可移植性得到良好的扩展。系统框图如图1所示。 系统硬件设计   本设计所采用的ADC器件是MAXIM公司的生产的低功耗16位模数转换器(ADC)MAX1162。MAX1162采用逐次逼近型ADC结构,具有自动关断、1.1μs快速唤醒和兼容于SPI/QSPI/MICROWIRE的高速接口,采用+5V单模拟电源,并且具有独立的数字电源引脚,允
[模拟电子]
一种用于CMOS图像传感器集成ADC的性能测试系统
随着CMOS技术的迅猛发展,CMOS图像传感器以其高集成度、低功耗、低成本等优点,已广泛用于超微型数码相机、PC机电脑眼、指纹识别、手机等图像采集的领域。 CMOS图像传感器的工作流程可以简单表述为:外界光信号由像素阵列采集并转换为模拟信号,再通过读出电路传输给A/D转换器,最后交于后续数字电路进行处理。由此可见,A/D转换器在整个CMOS图像传感器中起着“承上启下”的作用,其性能指标直接影响着整个系统的优劣,从而使得ADC的性能测试变得十分重要。 目前业界已经存在一些通用的ADC测试方法,例如针对静态指标测试的直方图法,针对动态指标测试的快速傅式变换法,以及专门针对ENOB的正弦波适应法等,但是还没有单一的测试方法能够有
[测试测量]
一种用于CMOS图像传感器集成A<font color='red'>DC</font>的性能测试系统
28µA IQ、三输出、降压 / 降压 / 升压型同步 DC/DC 控制器
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2013 年 2 月 7 日 – 凌力尔特公司 (Linear Technology Corporation) 推出三输出 (降压、降压、升压)、低静态电流同步 DC/DC 控制器 LTC3859AL,该器件在汽车冷车发动情况下,可保持所有输出电压处于稳定状态。在发动机重启或冷车发动时,12V 汽车电池的电压可能降至低于 4V,从而导致采用 5V 或更高电压工作的信息娱乐系统及其他电子系统复位。高效率同步升压型转换器给两个降压型转换器供电,从而在汽车电池电压下降时,避免输出电压压差,这在汽车启/停系统中是一个很有用的功能,因为这类系统在空闲时关闭发动机以节省燃料。或者,降压
[电源管理]
lpc1768ADC使用
Lpc1768内置有一个ad外设,该外设有八路复用输入,所以,可以同时接八路ad设备,同时还支持触发转换模式,由外部端口进行ad触发,ad转换完成之后可以产生中断 Lpc1768支持的转换模式有两种,分别会连续转换模式和软件单次转换模式,连续转换模式可以自动的按照我们选择的转换位进行ad的依次转换,单次转换模式是软件转换,只能一次转换一个ad值 使用AD分为以下几步 打开ADC时钟,注意,顺带gpio的时钟也要打开 设置gpio的功能为ad 设置转换模式和转换引脚 设置转换时钟,设置转换器正常工作模式都是在cr中完整 设置转换完成中断 在转换完成之后提取转换结果 代码例程如下 void
[单片机]
lpc1768A<font color='red'>DC</font>使用
600mA、同步降压-升压型DC/DC 转换器延长手持应用电池工作时间
2006 年 12 月 12 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出同步降压 - 升压型转换器 LTC3530 ,该器件在输入高于、低于或等于输出时,提供高达 600mA 的输出电流和稳定输出电压。其 1.8V 至 5.5V 的输入范围和 1.8V 至 5.25V 的输出范围与单节锂离子或两节碱性 / 镍镉 / 镍氢金属电池应用兼容。 LTC3530 的拓扑在所有工作模式下提供连续输送模式,非常适用于甚至在电池电压降至低于输出时也必须保持恒定输出电压的应用。在很多
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved