基于分布式电源并网逆变器控制策略与仿真研究

最新更新时间:2014-05-25来源: EEPW关键字:分布式电源  并网逆变器控制 手机看文章 扫描二维码
随时随地手机看文章
  1 并网逆变器系统设计

  1.1 DC-DC变换器

  DC-DC变换器是通过半导体阀器件的开关动作将直流电压先变为交流电压,经整流后又变为极性和电压值不同的直流电压的电路,这里要阐述的是中间经过变压器耦合的直流间接变换电路。DC-DC变换器在将直流电压变换为交流电压时频率是任意可选的,因此使用高频变压器能使变压器和电感等磁性元件和平波用电容器小型轻量化。如今,随着半导体阀器件的进步,输出功率为100 W以上的电源实际上采用的开关频率都在20~500kHz范围内,MHz级高频变换器也在开发研究之中。而且,通过变换频率的高频化,可以使平波用电容的容量减小,从而能够使用陶瓷电容等高可靠性的元件。而且,本文在举例阐述动作原理是采用双极功率晶体管、IGBT、MOSFET等开通关断可控的器件作为直流电压变换为交流电压的半导体阀器件,使用最多的还是MOSFET.

  1.2 直流母线电压PID控制器设计

  作为直流母线400V电压必须具有一定的稳定性,不应该随着负载的变化或电池电压的改变而产生波动。因此必然需要用到反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。由于PID控制器可以实现无差调节,其优异的动态稳态特性,以及方便灵活的参数整定方法,因此在逆变并网器中直流母线的电压控制选择PID控制算法。

  在闭环控制系统里,将调节器置于纯比例作用下,从小到大逐渐改变调节器的比例系数,得到等幅振荡的过渡过程。此时的比例系数称为临界比例系数Ku,相邻两个波峰间的时间间隔,称为临界振荡周期Tu.

  1.3 逆变并网锁相环设计

  锁相环分为模拟锁相环和数字环锁相。模拟锁相环在电路可靠性、稳定性和集成度方面有着不可克服的缺陷:数字锁相环又分为由数字逻辑器件构成的全数字逻辑锁相环和基于DSP的软件锁相环。全数字逻辑锁相环路由逻辑器件构成。

  为了实现对电网电压(SIGNAL)周期和相位的采样,这里利用了一个迟滞比较器把信号源的模拟采样信号(SIGNAL)整形为矩形波(TO_DSP)然后通过TMS320F28X的捕获单元得到电网电压的频率和相位信息。在设计中应当注意的是,由于软件是通过电网电压的上升沿来获得周期和相位信息的,因此在硬件的设计上应当保证电网电压的过零点和正弦波整形得到的矩形波的上升沿保持一致(即不能有延时),这就要求计算迟滞比较器的上限触发电平U+为0 V.

  迟滞比较器的上、下限触发电平为:

  

  式中:U+,U-为迟滞比较器的上、下限触发电平;UOH,OL为输出电压的上下限(UOH为5 V,UOL为0 V);UR为比较器的基准电压,这里为0V.

  交流有效值定义为:

  

  式中:x(t)为被测交流信号;Xeff为对应的有效值;t是时间;T是交流信号的周期。式(3)给出的有效值包含了基波和谐波的共同贡献,通常称这种有效值为真有效值,有时也称为方均根值。

  对于数字测量系统,式(3)变成:

  

  式中:xm(k)为交流信号在kTs时刻的采样值(也称采样数据),Ts为采样周期,下标m代表该采样值采自交流信号的第m个周波,k代表在第m个周波内的第k次采样(k=1,2,…,N);N是在交流信号一个周期内的采样次数或采样点数。 1.4 改进MPPT算法  传统MPPT算法,即爬山法,是一种比较实用的MPPT控制算法,这种方式虽在一定程度上减轻了CPU的负担,但由于周期性寻优,会对系统的输出电压造成周期性的波动。

  改进MPPT算法基本思想是:

  (1)利用过山车法,即先将光伏电池阵列两端电压U1钳制在蓄电池电压U2处,再逐渐增加U1,使光伏电池阵列的输出功率点由小到大,经过MPP后,继续增大U2,使输出功率比最大输出功率小于一个阈值△P1.输出功率由小变大,再变小,一定会经过一个最大点。在输出功率变化过程中,记录下光伏电池阵列输出最大功率时的输出电压Umax;

  (2)根据光伏电

  1.1 DC-DC变换器

  DC-DC变换器是通过半导体阀器件的开关动作将直流电压先变为交流电压,经整流后又变为极性和电压值不同的直流电压的电路,这里要阐述的是中间经过变压器耦合的直流间接变换电路。DC-DC变换器在将直流电压变换为交流电压时频率是任意可选的,因此使用高频变压器能使变压器和电感等磁性元件和平波用电容器小型轻量化。如今,随着半导体阀器件的进步,输出功率为100 W以上的电源实际上采用的开关频率都在20~500kHz范围内,MHz级高频变换器也在开发研究之中。而且,通过变换频率的高频化,可以使平波用电容的容量减小,从而能够使用陶瓷电容等高可靠性的元件。而且,本文在举例阐述动作原理是采用双极功率晶体管、IGBT、MOSFET等开通关断可控的器件作为直流电压变换为交流电压的半导体阀器件,使用最多的还是MOSFET.

  1.2 直流母线电压PID控制器设计

  作为直流母线400V电压必须具有一定的稳定性,不应该随着负载的变化或电池电压的改变而产生波动。因此必然需要用到反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。由于PID控制器可以实现无差调节,其优异的动态稳态特性,以及方便灵活的参数整定方法,因此在逆变并网器中直流母线的电压控制选择PID控制算法。

  在闭环控制系统里,将调节器置于纯比例作用下,从小到大逐渐改变调节器的比例系数,得到等幅振荡的过渡过程。此时的比例系数称为临界比例系数Ku,相邻两个波峰间的时间间隔,称为临界振荡周期Tu.

  1.3 逆变并网锁相环设计

  锁相环分为模拟锁相环和数字环锁相。模拟锁相环在电路可靠性、稳定性和集成度方面有着不可克服的缺陷:数字锁相环又分为由数字逻辑器件构成的全数字逻辑锁相环和基于DSP的软件锁相环。全数字逻辑锁相环路由逻辑器件构成。

  为了实现对电网电压(SIGNAL)周期和相位的采样,这里利用了一个迟滞比较器把信号源的模拟采样信号(SIGNAL)整形为矩形波(TO_DSP)然后通过TMS320F28X的捕获单元得到电网电压的频率和相位信息。在设计中应当注意的是,由于软件是通过电网电压的上升沿来获得周期和相位信息的,因此在硬件的设计上应当保证电网电压的过零点和正弦波整形得到的矩形波的上升沿保持一致(即不能有延时),这就要求计算迟滞比较器的上限触发电平U+为0 V.

  迟滞比较器的上、下限触发电平为:

  

  式中:U+,U-为迟滞比较器的上、下限触发电平;UOH,OL为输出电压的上下限(UOH为5 V,UOL为0 V);UR为比较器的基准电压,这里为0V.

  交流有效值定义为:

  

  式中:x(t)为被测交流信号;Xeff为对应的有效值;t是时间;T是交流信号的周期。式(3)给出的有效值包含了基波和谐波的共同贡献,通常称这种有效值为真有效值,有时也称为方均根值。

  对于数字测量系统,式(3)变成:

  

  式中:xm(k)为交流信号在kTs时刻的采样值(也称采样数据),Ts为采样周期,下标m代表该采样值采自交流信号的第m个周波,k代表在第m个周波内的第k次采样(k=1,2,…,N);N是在交流信号一个周期内的采样次数或采样点数。 1.4 改进MPPT算法  传统MPPT算法,即爬山法,是一种比较实用的MPPT控制算法,这种方式虽在一定程度上减轻了CPU的负担,但由于周期性寻优,会对系统的输出电压造成周期性的波动。

  改进MPPT算法基本思想是:

  (1)利用过山车法,即先将光伏电池阵列两端电压U1钳制在蓄电池电压U2处,再逐渐增加U1,使光伏电池阵列的输出功率点由小到大,经过MPP后,继续增大U2,使输出功率比最大输出功率小于一个阈值△P1.输出功率由小变大,再变小,一定会经过一个最大点。在输出功率变化过程中,记录下光伏电池阵列输出最大功率时的输出电压Umax;

  (2)根据光伏电池阵列输出最大功率时记录下的Umax,利用稳压程序(可利用PID控制)将U1钳制在记录下的Umax上,实现光伏电池阵列以最大功率稳定地输出能量;

  (3)当光照强度发生变化(由于在短时间内,环境温度的变化对系统输出功率的变化影响不大,可以忽略),即输出电压Umax时的输出功率P1与之前的Pmax之间差值超过一定阈值△P时,若P1>Pmax,说明光照强度增加了,MPP处的输出电压也相应增大了,所以此时应启动按增加光伏电池阵列输出电压的方向用过山车法寻找MPP程序。

  2 并网逆变器仿真

  2.1 DC-DC直流升压PID控制仿真

  作为直流母线400 V电压必须具有一定的稳定性,不应该随着负载的变化或电池电压的改变而产生波动。因此必然需要用到反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。

  针对DC-DC直流母线硬件结构以及控制方式对被控模型进行数学建模,由于PWM装置的数学模型与晶闸管装置一样,在控制系统中的作用也一样。因此,当开关频率为10kHz时,T=0.1 ms,在一般电力自动控制系统中,时间常数这么小的滞后环节可以近似一个一阶惯性环节,故其传递函数为:Ws(s)≈Ks/(TS+1) (5)

  这与晶闸管的传递函数完全一致。但需要注意,式(5)是近似的传递函数,实际上PWM变换器不是一个线性环节,而是具有继电特性的非线性环节。继电控制系统在一定条件下会产生自激振荡,这是采用线性控制理论的传递函数不能分析出来的。根据式(5)结合本设计开关频率10 kHz可以建立被控对象数学模型为:Ws(s)≈(400/9)/(1e-4+1) (6)

  

  如图1(a)为进一步进行PID参数整定后的PID输出电压响应曲线,可以看出即使在外界认为施加干扰的情况下PID调节器输出电压还保持在许可范围内。图1(b)所示为进一步进行PID参数整定后直流母线电压响应曲线。可以看到即便在外界认为施加干扰的情况下直流母线电压仍可自动稳定在400V的要求电压。这能为后续的SPWM逆变并网提供稳定的直流母线电压;而由于硬件电路限制,由于PID控制一推挽电路,而该推挽电路仅可提供0~12V的调节,考虑这一点所设计出来的PID调节器输出在0~12V范围之内。 2.2 逆变并网器并网仿真

  逆变并网是将逆变器所产生的正弦电压,在同频同相同幅的情况下进行并网。并通过锁相环调节并网电压以及电流,使它们达到同相,改善电能质量,从而提高传统电网稳定性。针对这一点,本设计建立元件级Simulink仿真。能有效减少失误率,提高并网可靠性,因此建立该仿真模型是很有必要的。模型中设计了相应的PID调节器,并对MPPT算法进行编写相应S函数。

  太阳能电池的伏安特性如图2(a)所示,它表明在某一确定的日照强度和温度下,太阳能电池的输出电压和输出电流之间的关系,简称V-I特性。从V-I特性可以看出,太阳能电池的输出电流在大部分工作电压范围内近似恒定,在接近开路电压时,电流下降率很大。

  由图2(a)可知,该伏安特性曲线具有强烈的非线性。太阳能电池的额定功率是在以下条件下定义的:当日射S=1 000 W/m2,太阳能电池温度T=25℃时,太阳能电池输出的最大功率便定义为他的额定功率。太阳能电池额定功率的单位是“峰瓦”,记以“Wp”.相应日射强度下太阳能电池输出最大功率的位置,称为“最大功率点”.根据Matlab提供的太阳能电池板模型的输出特性曲线可知当前条件下,最大功率点为241.8V时输出2083W.经过MPPT算法后,太阳能输出电压自动跟踪输出时最大功率点时的对应电压,而其亦以最大功率稳定输出。即输出为238.7V时,功率为2084W.对比之前实际太阳能电池板最大功率点数据,最大功率点为241.8V时输出2083W.可以看出该算法基本能跟踪太阳能电池板的最大功率点。

  3 结论

  本文针对并网过程中的直流升压、同步锁相、逆变并网动态过程,研究了基于电网特点的FIR数字滤波、交流采样和稳定直流母线电压的数字PID控制器等技术,提出了相应的控制策略并进行Simulink动态仿真,研究工作对并网逆变系统设计理论上具有一定指导作用。

关键字:分布式电源  并网逆变器控制 编辑:探路者 引用地址:基于分布式电源并网逆变器控制策略与仿真研究

上一篇:运用在高品质电源系统中纯正弦波逆变器的介绍
下一篇:基于PIC单片机的智能化逆变电源控制系统

推荐阅读最新更新时间:2023-10-12 22:40

分布式光伏电源接入对系统的影响
近年来,中国的光伏产业发展迅速,并将在未来的电力供应中扮演重要的角色。随着越来越多的分布式光伏电源接入到配电网系统中,对传统的配电网络提出了新的挑战。分布式光伏电源和配电网之间的交互影响,包括光伏电源对配电网的影响和配电网对光伏电源的影响两方面。 1.对电压的影响 集中供电的配电网一般呈辐射状。稳态运行状态下,电压沿馈线潮流方向逐渐降低。接入光伏电源后,由于馈线上的传输功率减少,使沿馈线各负荷节点处的电压被抬高,可能导致一些负荷节点的电压偏移超标,其电压被抬高多少与接入光伏电源的位置及总容量大小密切相关。通常情况下,可通过在中低压配电网络中设置有载调压变压器和电压调节器等调压设备,将负荷节点的电压偏移控制在符合规定的范围内。对
[新能源]
基于一款小功率光伏并网逆变器控制的设计方案
引言 21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。 系统工作原理及其控制方案 1 光伏并网逆变器电路原理 太阳能 光伏并网逆变器 的主电路原理图如图1所示。在本系统中,太阳能电池
[电源管理]
基于一款小功率光伏<font color='red'>并网逆变器</font><font color='red'>控制</font>的设计方案
基于分布式电源并网逆变器控制策略与仿真研究
  1 分布式电源并网逆变器系统设计   1.1 DC-DC变换器   DC-DC变换器是通过半导体阀器件的 开关 动作将直流电压先变为交流电压,经整流后又变为极性和电压值不同的直流电压的电路,这里要阐述的是中间经过变压器耦合的直流间接变换电路。DC-DC变换器在将直流电压变换为交流电压时频率是任意可选的,因此使用高频变压器能使变压器和电感等磁性元件和平波用 电容器 小型轻量化。如今,随着半导体阀器件的进步,输出功率为100 W以上的电源实际上采用的开关频率都在20~500kHz范围内,MHz级高频变换器也在开发研究之中。而且,通过变换频率的高频化,可以使平波用电容的容量减小,从而能够使用 陶瓷电容 等高可靠性的元件。而且,本
[电源管理]
基于<font color='red'>分布式</font><font color='red'>电源</font><font color='red'>并网逆变器</font><font color='red'>控制</font>策略与仿真研究
阳光电源高级技术经理汪心旋:分布式逆变器解决方案
  4月27日,第三届世纪光伏大会在上海举行,会议以“新能源 新未来”为主题,旨在研究万亿光伏产业后市场的挑战与机遇。     本次论坛由由世纪新能源网、光伏品牌实验室(PVBL)联合主办,近500余位嘉宾代表齐聚一堂,各抒己见,从不同的角度对中国光伏发展建言献策,热烈探讨未来中国光伏发展之路。     大会安排了一天的全体会议,就2018中国宏观经济走势、光伏补贴退坡政策预期、光伏市场回顾及未来展望、分布式及户用智能光伏解决方案、分布式项目融资瓶颈、区块链技术在新能源中的应有价值研究、新形势下的光伏电站投资趋势分析、分布式逆变器解决方案等16个议题进行了深入学习和探讨。     论坛上,国家能源局原副局长、党组成员张玉清;中国光
[新能源]
阳光电源:一季度业绩大涨 分布式光伏和储能成为亮点
2018 年第一季度业绩预告,净利润同比增长50%-75%:     公司发布2018 年第一季度业绩预告,归属于上市公司股东净利润19,400万元-22,600 万元,同比增长50%-75%。公司2018 年1-3 月非经常性损益主要系募集资金委托理财收入及政府补助,预计对净利润影响约1100 万元。报告期内公司整体经营情况良好,各项业务正常开展,业绩与去年同期相比保持稳定增长。      逆变器龙头位置稳固,力推分布式逆变器更加贴近用户侧:     公司专注于光伏逆变器,一直致力技术改进和方案优化,从原来的追赶欧美对手,到现在代表了国际领先水平,全球出货量保持领先。2017 年我国新增分布式光伏为19.44GW,同比增长3.
[新能源]
采用集成DC-DC转换器的分布式电源系统介绍
    传统的分布式电源架构采用多个隔离型DC-DC电源模块将48V总线电压转换到系统电源电压,如5V、3.3V和2.5V。然而该配置很难满足快速响应的低压处理器、DSP、ASIC以及DDR存储器的负载要求。这类器件对电源提出了更加严格的要求:非常快的瞬态响应、高效率、低电压以及紧凑的电路板尺寸。      引言     通过使用单个大功率、隔离型DC-DC模块将48V电压转换成一个中等电源,如12V或更低电压,可以获得较好的系统性能。将这一中等电压再转换到系统负载所要求的具体电压。这样的电压转换可以通过非隔离、负载点电源实现,如图1右侧框图所示。对于第二级电源转换,集成开关稳压器是非常理想的选择,因为输入电压(≤ 12V
[电源管理]
采用集成DC-DC转换器的<font color='red'>分布式</font><font color='red'>电源</font>系统介绍
一种基于TMS320LF2407的并网逆变器控制策略
  引言   为了解决即将到来的能源危机,开发绿色的、可持续的新型能源已成为近年来的研究焦点。其中,能馈系统和光伏系统的研究与设计已取得一定成绩,而并网逆变器(又称有源逆变器)作为它们与电网的接入口,扮演着极重要的角色。本文介绍一种采用TI公司TMS320LF2407DSP芯片实现的电压型单相全桥并网逆变器,该逆变器基于电压相量图的间接电流控制,输出为单位功率因数,而且确保了其能量只能从逆变器到电网的单向流动,从而避免了能量倒灌带来的逆变器功率器件的损坏。该方案控制简单,稳定性好,具有较好的应用效果。   1 控制策略及其实现   1.1 并网逆变器主电路   图1为并网逆变器主电路框图。图中,高压直
[嵌入式]
三相并网逆变器无差拍解耦控制方法
1 引言       近年来,随着全球范围内能源紧缺和环境污染问题的日益突出,开发和利用可再生能源受到世界各国的广泛关注。并网逆变器作为发电系统与电网的接口设备之一,其控制技术一直是研究的热点。无差拍控制是一种数字化PWM控制方法,在数字控制技术不断发展的今天,数字化PWM控制方式具有更加广阔的应用前景。无差拍控制具有良好的动态响应,并可使输出电流快速、准确地跟踪参考电流。故将其应用到三相并网逆变器中,可提高逆变器的抗干扰能力。 2 三相并网逆变器无差拍解耦控制 2.1 三相并网逆变器无差拍控制原理      无差拍控制的基本原理是在每一个开关周期开始时刻,采样并网逆变器输出电流i,并预测出下一周期开始时刻逆变器并网侧电流的给定值i
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved