高功率因数的单相全桥PWM整流电路原理

最新更新时间:2014-10-23来源: 互联网关键字:高功率因数  单相全桥  PWM 手机看文章 扫描二维码
随时随地手机看文章

在电子电路设计过程当中,如何不断的提高功率因数,始终是众多开发者一直在不断研究的问题。PWM整流电路是一种采用PWM控制的整流电路,能够极有效率的提高电路的功率因数。本篇文章将对单相全桥PWM整流电路的工作原理进行讲解,希望能为电源新手们提供便利。

图1

如图1所示,使用三角波和正弦信号的比较方法,来对电路中的V1~V4来进行SPWM控制。这样就可以在桥的交流输入端AB产生一个SPWM波uAB。uAB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。

由于Ls的滤波作用,谐波电压只使is产生很小的脉动。当正弦信号波频率和电源频率相同时,is也为与电源频率相同的正弦波。us一定时,is幅值和相位仅由uAB中基波uABf的幅值,及其与us的相位差决定。改变uABf的幅值和相位,可使is和us同相或反相,is比us超前90°,或使is与us相位差为所需角度。

PWM整流电路的工作原理

图2 PWM整流电路的运行方式向量图

图3 对单相全桥PWM整流电路工作原理的进一步说明

整流状态下:

us > 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。

V2通时,us通过V2、VD4向Ls储能。

V2关断时,Ls中的储能通过VD1、VD4向C充电。

us < 0时,(V1、VD3、VD2、Ls)和(V4、VD2、VD3、Ls)分别组成两个升压斩波电路。

本篇文章对单相半桥PWM整流电路的工作原理进行了讲解,并且对整流状态下的多个数值进行了确定。希望各位电源新手在阅读过本篇文章后,能够充分掌握单相半桥PWM整流电路的工作原理。

关键字:高功率因数  单相全桥  PWM 编辑:探路者 引用地址:高功率因数的单相全桥PWM整流电路原理

上一篇:电源的输出纹波噪声究竟该取多少才合适?
下一篇:示波器在开关电源分析中的应用

推荐阅读最新更新时间:2023-10-12 22:47

基于单片机的风机温度控制系统的设计
0.引言 风机为通用机械,它广泛地使用在国民经济的各个部门中。风机广泛用在工厂、矿井、车辆、建筑物、家用电器等的通风、排尘和冷却;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。另外,在一些对环境温度有特殊要求的场所,要求温度变化在1℃以下,这就需要一种可以根据外界环境温度来确定风机的转动与停止的风机温控系统。 本文设计的风机微小温控系统,可使温度检测精度达到0.01℃,并可手动设定温度上下限,且具有自动声光报警功能。 1.设计要求 本系统采用PT1000温度传感器检测环境温度(温度检测精度0.01℃),根据环境温度变化控制风机降温,并具备按键手动设定温度上下限、声光报警等功能。其控制面板示意
[单片机]
基于PWM的限流保护电路的设计研究
1引言 过载保护的功能是指在负载过载情况下能有效保护DC-DC变换器不致由于过热而损坏,即主要是控制功率MOSFET管的过载电流(输入电流)。由于用电负载不同,对过载保护功能要求也不同。如卫星控制系统要求过载后DC-DC变换器不能断电,因此采取限流保护;有效载荷系统要求可以在过载后DC-DC变换器断电,因此采取截流保护。本文提出了一种基于PWM的限流保护电路的设计方法,以及设计验证。 2 电流环控制方式的过流保护 电流型控制是双环控制系统,由开关器件的峰值电流信号反馈的电流环(内环)和输出电压信号反馈的电压环(外环)构成。功率变换部分是由电流环控制的电流源,电压外环控制功率级的电流环。电流内环负责输出电感的动态变化,而电压外环只需
[电源管理]
基于<font color='red'>PWM</font>的限流保护电路的设计研究
Buck-Boost PWM DC/DC转换器的级联
  利用三种最基本的PWM转换器,除了可以利用演化的方式派生出新的转换器之外,利用级联方式也可以派生出新的转换器。   将两个Buck-Boost电路组合后,可以得到单开关Buck-Boost级联,其演化过程如图所示。   其中,演化过程需要注意的是,第二级在如图(b)中的极性反转,以对应前级输出极性:在如图(c)中,第二级回路中加人一个二极管砀,以阻止与第一级连接后,在开关管V关断期间第一级电流窜人第二级。将如图(e)第一级与第二级中的开关管V,电容C重合,得到如图(d)所示的电路,其输出黼入关系为如图 Buck-Boost与Buck级联的演化过程。   如图 Buck-Boost与Buc
[电源管理]
Buck-Boost <font color='red'>PWM</font> DC/DC转换器的级联
工业光纤在高压变频器中的应用
引言 在高压变频器中,为解决单元串联多电平高压变频器中主控系统与功率单元之间存在的强弱电隔离,及功率单元与功率单元之间的电磁干扰问题,提出了采用光纤连接方法实现功率驱动PWM信号的远距离传送。 背景 在冶金、化工、电力、市政供水和采矿等行业广泛应用的泵类负载,占整个用电设备能耗的40%左右,电费在自来水厂甚至占制水成本的50%。这是因为:一方面,设备在设计时,通常都留有一定的余量;另一方面,由于工况的变化,需要泵机输出不同的流量。 随着市场经济的发展和自动化,智能化程度的提高,采用高压变频器对泵类负载进行速度控制,不但对改进工艺、提高产品质量有好处,又是节能和设备经济运行的要求,是可持续发展的必然趋势。对泵类负载进行调速控制的好处甚
[网络通信]
工业光纤在高压变频器中的应用
基于智能PWM控制的机车制动控制单元的设计
1 引 言 随着我国国民经济的蓬勃发展和人民生活水平的日益提高,铁路的客、货运量将越来越大,列车牵引重量与运行速度将不断提高。高速客运及重载货运列车的发展对列车制动系统提出了更高更新的要求。 国外发达国家都是采用微机应用先进控制理论实现对机车制动气缸的精确控制。而在我国机车上广泛使用的DK-l和JZ-7型制动机只能对机车实现一些简单的逻辑控制功能,不能实现对机车制动缸和均衡风缸的闭环控制,难以满足机车制动控制的需要。随着电子技术及微机控制技术应用的日渐成熟,有必要应用现代电子技术和先进的控制理论,利用微机的强大功能实现对机车的精确制动。 目前世界各国铁路绝大多数仍采用空气制动,要实现对气体压力的控制,特别是小流量压力控
[单片机]
基于智能<font color='red'>PWM</font>控制的机车制动控制单元的设计
1.PWM整流器中相序调整的新方法
1 引言   PWM整流器不仅可以控制AC/DC 变换性能,而且可实现网侧单位功率因数和正弦波电流控制,甚至能使电能双向传输 ,因此被广泛应用于功率因数补偿、高性能整流器、电能回馈、有源滤波等领域。整流器的输入端来自电网的三相电源,其相序a,b,c 在保证相位差120°的前提下只是一个相对量,而整流器算法中三相电源的相序涉及大量的数学变换以及PWM 波的输出,需在输入端定义。这样如果输入端接线错误,就不能实现算法功能。因此在不同的电网环境,必须先用仪器测量相序,再让整流器工作,这样的过程繁琐且容易出错。在此提出一种新的三相电源相序调整方法,有效地解决了上述问题。   2 PWM 整流器的数学模型及控制策略   2
[电源管理]
1.<font color='red'>PWM</font>整流器中相序调整的新方法
stm8s003MCU_PWM_引脚功能配置
最近在使用stm8s003MCU进行一款LED灯产品的开发。我使用的是TIM2的PWM输出功能,使用TIM2_CHANNEL3,PA3引脚复用为TIM2_CH3。 一、如何复用PA3引脚为TIM2_CH3 stm8MCU的引脚复用功能并不像我之前使用过的NXP的MCU或者51MCU。之前使用的NXP MCU引脚有专用的引脚功能配置寄存器,可以通过配置寄存器将引脚配置为不同功能。stm8MCU的引脚有main function(after reset)即复位后引脚的主功能,另外,引脚还有个default alternet function,比如:PA3的default alternet function就是TIM2_CH3。若要
[单片机]
使用STM32G474芯片做Half模式的PWM输出
有人想使用STM32G474芯片做Half模式的PWM输出,发现有点问题,明明配置了定时器A的两路输出, 结果总是只有1路输出。这里简单演示下实现过程。【顺便提醒下,并非STM32G4全系列都内置高精度定时器】 所谓Half模式就是指硬件基于给定的计数周期值自动输出占空比为50%的方波,用户无须对比较寄存器的值再进行设置,这里硬件默认使用比较寄存器1【cmp1】,硬件自动将用户设置的PERIOD值的一半赋给CMP1寄存器。换言之,用户此时无法对CMP1寄存器进行赋值。 另外,对于输出配置必须使用CMP1比较事件和定时器的Period周期事件。 关于HALF模式的原理就介绍到这里,下面就使用STM32G474RE的Nucle
[单片机]
使用STM32G474芯片做Half模式的<font color='red'>PWM</font>输出
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved