最适合汽车电源IC发展的技术要求

最新更新时间:2014-12-22来源: 互联网关键字:汽车电源  IC发展 手机看文章 扫描二维码
随时随地手机看文章

1.汽车电子化进程对电源IC的要求

近年来,汽车的电子化发展迅速。围绕汽车的“高科技”电子设备的搭载越来越多,与传统的机械控制占比较大的时代相比,电子控制、电动设备所占比例变得非常大。预计汽车的电子化需求在未来也将依然强劲。

汽车电子化的主要原因有3大关键词。

第一个关键词是"环保"(eco)。这在HV(混合动力汽车)、EV(电动汽车)向普通车辆的普及过程中作用显著。另外,各汽车制造商之间的低油耗化竞争也日益激化。这些突破是由复杂且周密的电子化控制来实现的,当然随着HV、EV的普及和油耗性能的提升,所搭载的电子设备还会继续增加。

第二个关键词是"信息与舒适"(comfort)。除作为出行工具之外,汽车更多被视为日用品,其智能化也在不断发展,例如可以下载并欣赏喜欢的音乐,在路上即可轻松获得目的地的信息等。而为了实现这些功能,需要众多通信相关的电子元器件。另外,与提高舒适性相关的电子化也在不断发展,无需钥匙即可开关车门和启动引擎的智能钥匙在普通车辆中已基本普及等,使车内越来越成为更舒适的空间。

最后一个关键词是汽车不可欠缺的"安全"(satefy)。多年以来,汽车的安全性多采取强化车架钢性、撞击时的缓震以及对驾乘人员启用安全气囊等的危险发生"事后"的对策。但是,近年来随着电子设备性能的提升,已经开始聚焦危险发生"前"的对策。通过提高车载摄像头和车载传感器的精度与动作可靠性,如今实现汽车行驶安全的电子设备已经被确立为一个重要的领域,预计今后各种功能的安全设备将会相继开发并投入市场。

汽车用电源IC几乎可用于任何电子设备,为实现这3大关键词,对“低静态电流”(待机电流低)、“低电压工作”、“小型化、大电流”等性能的要求越来越高(图1)。

(图1)近年来的电子化背景与需求

ROHM利用独有的电路设计,成功降低了静态电流,为汽车的低功耗化做出巨大贡献。例如,ROHM将实现了业界最高级别的6μA低静态电流的车载LDO系列“BD7xxL2EFJ-C / BD7xxL5FP-C”和实现了仅为ROHM以往产品1/100的22μA低静态电流的DC/DC转换器IC“BD99010 EFV-M / BD 99011EFV-M”投入量产,并获得客户高度好评。

2.高效化及其课题

刚刚提到伴随着HV、EV的普及和油耗性能的提升,所搭载的电子设备还会继续增加。这就使得电子元器件的高效化对油耗性能提升影响越来越大。

其中,电源IC由于连接于输出端的所有电子元器件的消耗电流均会从中流过,而被定位为要求更高效率的电子元器件。

为满足这种高效化需求,对电源IC进行脉冲控制(PWM:Pulse Width Modulation和PFM:Pulse Frequency Modulation等)已成为必然趋势,但这种控制方式又会对周围元件产生噪音干扰(图2)。

(图2)车载电源IC的种类与特点

车载用电子元器件因噪音干扰而误动作,可能涉及到人身生命安全,因此,为使电子元器件在任何时候均可正常工作,产品必须符合CISPR25(发射干扰:产生干扰侧的标准)和ISO11452(抗干扰:受到干扰影响侧的标准)等电磁兼容相关的各种标准。

因此,对车载用产品来说,不妨碍其他设备(发射干扰)、以及受到其他设备妨碍时能保持本来的性能(抗干扰)是非常重要的。

EMC(Electromagnetic Compatibility)从EMI(发射干扰)和EMS(抗干扰度)两种性能兼备的必要性角度被称为“电磁兼容性”。

3.工艺的发展及其课题

工艺的微细化曾遵从摩尔定律迅速发展,但如今已不见以往的显著发展态势。

像电源IC这样的产品,耗电量较大的电源IC其功率损耗也大。其损耗成为热量,从IC经由PCB和封装散发到外部(图3)。

(图3)封装结构图(热阻)

在车载等使用时周围温度较高的环境下,到达IC的使用温度上限的容许温差变小,从而必须极力控制其功率损耗导致的温升。因此,需要改善(降低)芯片的散热性能(热阻)。

热阻不仅受封装的材质、引线框架的材质、固定芯片与框架的接合材质影响,受到框架形状和芯片尺寸的影响也很大。

遵循摩尔定律,芯片尺寸越来越小,使热阻变高,即使消耗与以往相同的电量,芯片的温升也会增大。

随着车载控制设备的电子控制/电动化发展,在被称为“平台化”的背景下,电子元器件的商品化也自然而然不断发展。所以,即使热阻增高,降低芯片尺寸也是必然选择。

为解决这些问题,进行控制设备的综合散热设计,使IC与PCB热阻平衡变得越来越重要。

4.车载EMC对策例

如前所述,车载电子元器件必须符合CISPR25(发射干扰:产生干扰侧的标准)和ISO11452(抗干扰:受干扰影响侧的标准)等电磁兼容相关的各种标准。

这些噪音干扰根据传输路径,可分为直接经布线传输的传导噪音和经空气传输的辐射性噪音(图4,5)。

(图4)同一PCB板上的噪音传输路径

(图5)来自PCB板间及PCB板外部的噪音传输路径

输入滤波器作为传导噪音对策非常有效。

以Π型滤波器为做为基本型,针对未满足标准的频段,并联阻抗较低的旁路电容。

下面的应用实例DC/DC转换器IC“BD90640EFJ-C”就是采用以上这种噪音对策应用示例。

在图7的示例中,对于AM频段噪音,使用Π型滤波器使之衰减;对于CB~FM频段噪音,选用谐振频率在20MHz左右的旁路电容使之衰减,以满足CISPR25-Class5(图6)要求。

(图6)CISPR25传输干扰的极限值

(图7)通过输入滤波器作为传导噪音对策示例

但是,在90MHz附近有噪音残留,因此,通过再增加谐振频率为100MHz左右的旁路电容,从而使所有频段均满足了Class5的要求。

最后,请注意,由于作为噪音对策所使用的电容的频率特性因电压、温度依存性、尺寸及零部件厂家不同而不同,因此需要在使用前向厂家进行确认。

5.散热对策时的注意事项

如前所述,随着电子元器件向小型化发展,其发热密度变高,因此,不仅确保配套设备整体的正常工作难度增加,而且确保寿命、可靠性也越来越难。

避免产生这些问题的散热设计技术已成为非常重要的因素。

通常,只要知道PCB板贴装时IC的热阻θJA和功耗,或封装顶部中心温度TT热性能参数ΨJT,即可知道IC大致的结点(接合部)温度Tj。如何将该结点温度Tj控制在绝对最大额定值以下是热设计的根本。

此时必须要注意的是电子元器件的热阻的定义。不同的厂家其定义、条件不同,这增加了热设计的难度。虽然有JEDEC(半导体标准协会)制定的JESD51标准系列等,但因各半导体厂家的理解不同,使得条件并未达到1对1的一致性,这是普遍现象。因此,在配套产品设计阶段需要注意。

一般半导体厂家定义的热阻值是根据JESD51-2A(在305mm见方的外罩所包围的无风空间里,将安装了1个IC的PCB板固定的状态)测量的,与配套产品实际的使用环境差异较大。

例如,图8左端的PCB板条件为电子元器件的规格书上记载的条件。

(图8)电子元器件的温升与集成度关系

如中图所示,当配套产品使用多个该部件时,在很接近的状态下配置会使每个部件的有效散热面积减少。注意,这就意味着因热阻增加导致各部件的温度上升。

车载领域众多ECU等使用的电源IC,同时也是我们身边的电子设备不可或缺的产品。ROHM利用所擅长的模拟技术,打造出AC/DC转换器IC及DC/DC转换器IC等从一次侧到二次侧适用各种设备的丰富的产品阵容。未来,ROHM还将发力满足前述的各种客户需求的综合应用,进一步完善产品阵容。

关键字:汽车电源  IC发展 编辑:探路者 引用地址:最适合汽车电源IC发展的技术要求

上一篇:S波段固态功率放大器的仿真设计
下一篇:如何正确理解TL431的工作方式

推荐阅读最新更新时间:2023-10-12 22:50

问道汽车电源IC:究竟集成还是分立?
由于手机行业对于基板空间的要求极为严苛,手机电源管理IC的SoC化趋势已经十分明显,然而目前正有越来越多的模拟电路大厂开始推出车用电源管理IC的SoC解决方案。究竟是分立,还是集成?手机电源管理市场曾经一度热议。未来这一争端也将向汽车行业延伸?    车用电源管理SoC不断推出 越来越多模拟电路大厂开始推出车用电源管理IC的SoC解决方案。    “绿色环保”概念在全球范围内已经深入人心,而电源管理技术在提高产品功率效率方面发挥着重要作用,广泛应用于照明、电信、电网、家电、汽车等几乎所有电子设备之中。由于受SoC化设计趋势的影响,近年来电源管理IC技术表现出越来越强的集成化趋势。“特别是在便携设备领域这一趋势已
[嵌入式]
视频滤波驱动器IC设计最新发展趋势
目前在推动视频滤波器市场发展的力量,主要有四大趋势:更高解析度(HD和1080p HD)、行动视频、绿色环保的需求、以及不断变化的输出方案。这些趋势影响着机上盒、DVD、蓝光、TV、PMP和手机等设备上所採用的视频输出电路配置。积体电路(IC)製造商必须要确保自己的产品线能适应上述的发展趋势。视频滤波驱动器IC就是其中一个明显的例子,足以说明像快捷半导体这样的IC公司是如何利用能够满足这些重要要求的产品来顺应视频市场的主要发展趋势。本文将提供一些实例来说明此一发展趋势。   目前视频滤波驱动器市场的四大发展趋势如下:1.更高的解析度,2.行动视频,3.绿色环保的要求,4.视频输出方案的重新设计。这些趋势影响着机上盒、DVD及
[模拟电子]
视频滤波驱动器<font color='red'>IC</font>设计最新<font color='red'>发展</font>趋势
42V电源系统--汽车电源系统新方案
  汽车电源的电压从上世纪50年代的6V改为12V,己有50多年的历史。自1990年开始,汽车用电量每年以5%~8%的比例增加,其平均电力负荷的发展历史与趋势见图1。随着汽车技术的不断进步,将会有越来越多的电气及电子系统被应用到汽车上。          20世纪90年代,汽车设计者提出的提高汽车电源电压的构想,很快得到汽车研究者、汽车制造商、零部件制造商的一致认同,并制定了汽车电源42V电压的相关标准。   汽车供电系统由现有的l4V标准向42V标准转化已经成为必然发展趋势,并将在未来数年内得到迅速发展,从而导致汽车电器电子产品的一场革命。汽车新供电系统标准的实施,对汽车电子工业的传统产品将带来巨大的冲击。这对于我国来说既是一次
[电源管理]
42V电源系统--<font color='red'>汽车电源</font>系统新方案
北京市发布《加快科技创新发展集成电路产业的指导意见》
北京市发布《加快科技创新发展集成电路产业的指导意见》, 到2020年,建成具有国际影响力的集成电路产业技术创新基地。 原文如下: 为深入贯彻落实国家关于集成电路产业发展的决策部署,加快本市集成电路产业发展,提升产业核心竞争力,推动构建高精尖经济结构,制定本指导意见。 一、总体要求 (一)指导思想 深入学习贯彻党的十九大精神,以习近平新时代中国特色社会主义思想为指导,深入贯彻落实习近平总书记两次视察北京重要讲话和对北京工作的一系列重要指示精神,坚定不移贯彻新发展理念,牢牢把握首都城市战略定位,以集成电路产业“承载国家战略、布局新兴前沿、支撑转型升级”为主线,集中资源、重点投入,实施“核心企业—关键领域—重点产品”突破战略,不断提高集
[半导体设计/制造]
金融IC卡在行业应用中的发展障碍
    金融IC卡在行业应用中的发展五个障碍按照人行的要求,到2015年国内所有的银行新发行的银行卡都必须是满足PBOC2.0规范的金融IC卡。在人行、银监、银联的规划中,金融IC卡将肩负着更高安全、更多应用场合、更加便民的市民一卡通重担。毫无疑问,金融IC卡替代磁条卡是必然的、也是应该,但本文仅就金融IC卡在行业应用中的发展进行讨论,探索如何通过行业应用更加快速地推进金融IC卡在普通民众中的使用。   所谓的行业应用,指的是在金融IC卡的金融账户模块之外,通过加载其它行业的数据模块,使得一张金融IC卡既可以满足银行的各种账户交易,同时还可以应用于其它行业的场合。最典型的行业应用有:公交卡、身份识别卡、医保卡等等。    
[安防电子]
2019年IC产业的发展机遇和趋势在哪?
2018年,是中国IC产业风起云涌的一年。这一年,IC从一个行业的专有词汇升温成为全民关注的热点话题。这一年,我们对 中国芯 有思考,对5G、AI和IoT技术有期许,对下一代移动终端有憧憬。告别这一年,进入2019,如何激活中国芯Flag?近日,紫光展锐携手众多媒体大V谈芯论道,从IC企业和媒体观察者的全新视角共同解读了2018年IC圈的一些趋势。 5G对IC产业是机遇还是挑战? 2018年最火的话题莫过于5G了。2018年6月,5G独立组网标准冻结,5G完成了第一阶段全功能标准化工作;12月6日,中国三大运营商获得全国范围5G中低频段试验频率使用许可;2019年1月10日,工信部宣布发放5G临时牌照,拉开我国5G商用建网的大
[嵌入式]
2019年<font color='red'>IC</font>产业的<font color='red'>发展</font>机遇和趋势在哪?
上海软件和集成电路产业发展专项资金欲支持单位名单揭秘
近日,上海经信委公布了2019年软件和集成电路产业发展专项资金(软件和信息服务业领域)拟支持单位,本批次合计拟支持金额11980万元。 拟支持单位如下:
[手机便携]
上海软件和<font color='red'>集成电路</font>产业<font color='red'>发展</font>专项资金欲支持单位名单揭秘
随着集成电路发展,M12连接器应该怎样提高自己的数据速率?
要提高M12的数据速率,可以从以下几个方面进行优化: 采用更高速度的协议:M12连接器支持不同的通信协议,包括串行通信、等。采用更高速度的通信协议,如 3.0、等,可以显著提高连接器的数据传输速率。 优化电缆和接触件设计:优化电缆和接触件的设计,降低衰减和失真,提高信号质量和稳定性。例如,采用高导电材料、优化绝缘层厚度、改善接触件的导电性能等措施,可以提高数据传输速率。 减小接触:采用低电阻接触件和合适的连接方式,可以减小接触电阻,提高连接器的导电性能,从而提高数据传输速率。 采用多通道传输技术:采用多通道传输技术,可以将数据分多个通道传输,提高数据传输速率。例如,采用并行的多个M12连接器,可以实现更高的数据传输速率。 优化系统
[机器人]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved