基于数字式电镀电源并联均流系统设计方案

最新更新时间:2014-12-24来源: 互联网关键字:数字式  电镀电源 手机看文章 扫描二维码
随时随地手机看文章

1 总体设计

 

并联均流系统由主控模块和模块组成,如图1所示。主控模块和模块间以高效和高可靠性的CAN总线为媒介。主控模块完成人机交互和整机的运行监控。每个模块实质为单个电源模块, 按照主控模块的指令以稳压或稳流的方式工作。系统在稳流工作方式下,主控模块将设定工作电流均匀分配给每个功率模块,功率模块根据分配电流控制本模块以稳 流方式运行,从而实现系统稳流和均流。系统在稳压工作方式下,主控模块指定一个功率模块为主模块,其余为从模块。主模块按照主控模块给定的电压以稳压方式 工作,实现系统稳压。同时主控模块获取每个功率模块的电流,计算平均电流并分配给从模块,从模块按照平均电流以稳流方式工作,实现系统均流。在稳流或稳压 工作的基础上,安培时模式下主控模块统计工作安培时数,当达到设定安培时数时进行加药控制。工艺曲线模式下主控模块控制系统按照设定的稳压或稳流工作曲线工作。远程控制模式下,上位机通过与主控模块完成对系统的运程监控。

图1 系统总体结构图

2 系统硬件设计

2.1 主控芯片STM32F103VET6

STM32F103VET6属于STM32F103增强系列处理器,具有更多片内RAM和外设,具体特性如下:

1)采用基于哈佛架构的3级流水线内核Cortex-M3,具有单周期乘法、硬件除法特性,最高工作频率72 MHz,运算速度高达1.25DMips /MHz.

2)内置高速存储器,高达512 k字节的闪存和64 k字节的SRAM.

3)多达80个快速多功能双向I/O口,所有I/O口可以映射到16个外部中断;几乎所有端口均可容忍5V信号。

4)多达11个定时器,包括4个16位通用定时器、2个16位带死区控制的PWM高级控制定时器、2个看门狗定时器、系统时间定时器、2个用于驱动DAC的16位基本定时器。

5)多达13个接口,包括2个I2C接口、5个USART接口、3个SPI接口、CAN接口、USB2.0全速接口、SDIO接口。

6)3个12位A/D转换器,1μs转换时间(多达21个输入通道)和2通道12位D/A转换器。

STM32F103VET6出色的性能和丰富的资源使得几乎不需要扩展外围电路就能完全满足设计要求,使硬件设计大为简化。执行速度和内存容量完全满足 主控模块的多任务实时应用。如图1所示,主控模块设计使用STM32F103VET6的CAN、USART、USB等通信接口,CAN用于和功率模块通 信,2个USART分别用于微型打印机和485通信(上位机通信),USB用于笔记本现场配置电源系统参数。主控模块人机界面中的LCD、按键、LED指示、蜂鸣器以及加药开关,均通过GPIO连接,共计34个。

2.2 CAN通信模块

CAN通信模块是系统中最关键的通信模块,由CAN控制器、 光耦隔离和CAN总线驱动器组成(见图1)。CAN控制器集成于STM32F103VET6内部,完全支持CAN协议2.0A和2.0B,波特?最高可达 1兆位/秒。控制器内部集成3个优先级可配置的发送邮箱、2个3级深的接收FIFO、14个位宽可变的过滤器组和灵活的中断管理,可以高效地完成主控模 块与多个功率模块间的大量通信。

光耦隔离和CAN总线驱动器电路如图2所示。CAN-TX和CAN-RX是与CAN控制器相连的发送数 据线和接收数据线。由于系统输出功率大,电磁干扰强,采用高速光耦6N137将CAN控制器与CAN总线隔离。MCP2551是一个可容错的高速CAN总 线驱动器,作为CAN控制器和物理总线的接口。

图2 耦隔离和CAN总线驱动器电路

2.3 LCD模块

LCD模块是人机界面的主要组成部分。用LCD代替传统的数码管,可以应用图形交互界面,使人机交互方便友善。系统采用240x128图形点阵STN液晶模块ZLG240128A,该模块采用RA6963控制器,内建256-word的ROM字形产生器,可以显示英 文字型、数字符号等字母,并支持最大64 kByte的外部显示内存(Display RAM),具有文字显示模式、绘图显示模式及混合显示模式。LCD接口电路如图3所示,左侧LCD控制和数据线与5 V容忍GPIO连接。LCD模块的工作电压为5 V,而STM32F103VET6的输出电压为33 V,因此使用10 k排阻Rp1、Rp2作为上拉电阻,并使用GPIO的开漏模式。可变电阻VR1用于背光亮度调节。

图3 LCD接口电路3 系统软件设计

3.1 软件总体架构

软件总体架构如图4所示。底层固件库模块由ST公司提供,包括STM32F103系列处理器所有外设驱动和应用接口。启动配置模块由汇编文件stm32f10x_startup.s构成,完成堆栈和中断向量表的初始化。硬件配置模块完成复位和时钟(RCC)、 中断控制器、GPIO、看门狗、定时器等片内外设的初始化。中断服务包括系统节拍时钟、看门狗、CAN收发、定时器、USART的中断服务程序。设计中采 用实时操作系统,便于实现人机界面、、控制等多个任务的协调运行,保证控制的实时性。人机界面模块包括LCD驱动、按键扫描、图形用户界面、LED和 蜂鸣器驱动,实现人机交互。工作控制模块监控多个模块并联运行,并实现均流。模块完成监控模块运行所需要的CAN和上位机远程控制时的 485通信。定时器模块提供其他模块工作所需要的定时功能。

图4 软件总体架构图

3.2 工作控制模块

工作控制模块包括系统初始化和运行控制两部分。系统初始化通过读取模块的额定参数、统计功率模块数、计算系统总额定电流,以确定并联系统的初始配 置。运行控制按照用户指定方式,实时监控功率模块并联运行,监控流程如图5所示。首先向功率模块设置稳压或稳流工作模式以及电压或电流参数,然后发送启动 命令,使功率模块开始工作。状态查询以广播方式发送查询命令,以查询各功率模块的运行状态和参数。报文接收接收功率模块发送的查询响应报文,并从报文中获 得数据;通信检测根据是否有响应报文判断通信是否正常。数据处理根据报文接收中获得的数据计算总电流、电压、平均电流(稳压模式)、安培时(安培时模式) 等系统运行参数。故障处理检测功率模块和系统故障,进行故障处理和报警。输出处理根据当前的运行状态输出控制参数,包括软启动输出、在稳压模式下输出平均 电流、安培时模式下输出加药信号、工艺曲线模式下输出下一阶段的电压或电流参数等。停机控制在需要停机时通过发送停机命令控制功率模块停止工作。

图5 运行监控流程图

4 实验应用

实验系统包含2个1 000 A/15 V的功率模块,系统在总设定电流下以稳压模式运行,测得表1中实验结果数据。

表1 稳压模式测试结果

从表中可见,均流不平衡度在5%以内,满足国家相关标准,实现了功率模块的并联运行和均流。经实际测试表明,系统其他相关指标均满足要求,系统运行稳定可靠。

5 结论

并联均流系统采用ARM芯片STM32F103作为主控芯片,利用其丰富的资源和强大性能,实现了多种外设接口并简化了硬件设计,实现了图形交互界面、基于操作系统的任务调度、CAN和上位机通信以及多种工作模式,增强了系统的功能、友善性和扩展性。

关键字:数字式  电镀电源 编辑:探路者 引用地址:基于数字式电镀电源并联均流系统设计方案

上一篇:逆变电源数字控制技术的应用
下一篇:具数字电源管理功能的高性能单相 DC/DC 控制器

推荐阅读最新更新时间:2023-10-12 22:50

一种用于SDH光纤传输系统设备时钟的数字式锁相环
    摘要: 介绍一种用于SDH光纤传输系统设备时钟的数字式锁相环的构成及设计原理,并给出了有关的测试结果,测试结果表明该锁相环具有很好的跟踪特性。     关键词: 同步传输体制(SDH)  SDH设备时钟(SEC)  数字式锁相环(DPLL)     SDH设备时钟(SEC)是SDH光纤传输系统的重要组成部分,它为SDH设备提供全网统一的定时信息,以便使整个数字网各个节点的全部数据得以正确的传输和交换。     SEC的核心是锁相环,它用来跟踪网同步定时基准,并对定时基准在传输过程中产生的抖动和漂移等损伤进行过滤,而且当所有外部定时基准信号都不可用时,可以通过它内部
[应用]
基于大功率电镀电源软开关技术的研究
  目前电镀电源应用越来越广,人们对其品质要求也越来越高。随着半导体技术的进步,电镀电源逐渐向高频高效化、大功率化发展,使得电镀电源具有更高的功率密度、快速的响应能力以及更小的体积。但常规PWM变换技术是一种硬开关模式,开关损耗大、器件温度过高等严重制约了 开关电源 工作频率的提高,已经无法满足要求。软开关技术具有降低电力电子器件开关功耗、提高开关频率、降低电磁干扰、改善器件的工作环境等优点,是近10年来国际电力电子领域研究的热点。因而,采用软开关技术研究大功率高频软开关电镀电源是电镀工艺发展的必然。    1 大功率电镀电源软开关技术的分类   大功率高频电镀电源实际上是一种低压大电流的整流装置。通常采用PWM DC—
[电源管理]
基于大功率<font color='red'>电镀</font><font color='red'>电源</font>软开关技术的研究
万用表测线路断点位置_数字式万用表使用教程
1数字万用表介绍 数字式测量仪表已成为主流,因为数字式仪表灵敏度高,准确度高,显示清晰,过载能力强,便于携带,使用更简单。 图1 下面以该型数字万用表为例,简单介绍其使用方法和注意事项。 2数字万用表外观 3数字万用表使用图解 4 测量电压 1、将黑表笔插入com端口,红表笔插入VΩ端口。 2、功能旋转开关打至V~(交流),V-(直流),并选择合 适的量程 。 3、红表笔探针接触被测电路正端,黑表笔探针接地或 接负端,即与被测线路并联。 4、读出LCD显示屏数字。 5测量电阻 1、关掉电路电源。 2、 选择电阻档(Ω)。 3、 将黑色测试探头插入 COM 输入插口。 红色测试
[测试测量]
万用表测线路断点位置_<font color='red'>数字式</font>万用表使用教程
基于数字式电镀电源并联均流系统设计方案
1 总体设计   并联均流系统由主控模块和 功率 模块组成,如图1所示。主控模块和 功率 模块间以高效和高可靠性的CAN总线为 通信 媒介。主控模块完成人机交互和整机的运行监控。每个 功率 模块实质为单个电源模块, 按照主控模块的指令以稳压或稳流的方式工作。系统在稳流工作方式下,主控模块将设定工作电流均匀分配给每个功率模块,功率模块根据分配电流控制本模块以稳 流方式运行,从而实现系统稳流和均流。系统在稳压工作方式下,主控模块指定一个功率模块为主模块,其余为从模块。主模块按照主控模块给定的电压以稳压方式 工作,实现系统稳压。同时主控模块获取每个功率模块的电流,计算平均电流并分配给从模块,从模块按照平均电流以稳流方式工作,实现系统
[电源管理]
基于<font color='red'>数字式</font><font color='red'>电镀</font><font color='red'>电源</font>并联均流系统设计方案
数字式万用表测量电路原理
1、概述 数字的测量将一些测量信号转换成直流电压信号,然后通过模数转换电路转换成数字信号,再通过计数器计数,最后将测量结果用数字直接显示。它不但能测量直流电压、交流电压、直流电流,交流电流和电阻,也能测量信号的频率、的容量、的放大倍数等参数,还具有自动校零、自动极性转换、过载指示、保持读数、显示测量单位符号等功能。其中系统框图。 数字万用表系统框图,如图1所示: 图1 数字万用表系统框图 2、测量电路原理 dt830万用表采用大规模集成芯片7106(或者7107)作为电路的模数转换电路和显示驱动电路。7106的芯片引脚图如图2所示,引脚功能如下所述。 7106的芯片引脚图,如图2所示: 图2 7106的芯片引脚图 (1
[测试测量]
<font color='red'>数字式</font>万用表测量电路原理
数字式光伏电池阵列模拟器的研制
1 引言     太阳能作为一种新型的可再生资源受到越来越广泛的重视,但在光伏系统的研发过程中,太阳能电池阵列由于实验受到日照强度、环境温度的影响,导致实验成本过高,研发周期变长。光伏电池阵列模拟器可以大大缩短光伏系统的研究周期,提高研究效率及研究结果的可信性。     本文设计的光伏电池阵列模拟器以半桥电路为基础,基于DSP控制,并加入了PI控制改善系统动态性能和稳态精度。 2 太阳能电池的工作特性     太阳能电池在有光照条件下,光生电流会流过负载,从而产生负载电压。这时太阳能电池的等效电路如图1所示。其中,RS为串联电阻,Rsh为旁漏电阻,也称跨接电阻,它是由体内的缺陷或硅片边缘不清洁引起的。显然,旁路电流Ish和
[电源管理]
<font color='red'>数字式</font>光伏电池阵列模拟器的研制
数字式万用表如何测量电流
  数字式万用表如何测量电流   1.断开电路;   2.黑表笔插入com端口,红表笔插入mA或者20A端口;   3.功能旋转开关打至A~(交流),A-(直流),并选择合适 的量程;   4.断开被测线路,将数字万用表串联入被测 线路中,被测线路中电流从一端流入红表笔, 经万用表黑表笔流出,再流入被测线路中;   5.接通电路;   6.读出显示屏数字。   数字万用表测量电流的原理   数字万用表测量电流的基本原理是利用了欧姆定理:I=U/R。数字式万用表的有多个电流档位,对应多个取样电阻,测量时,将万用表串联接在被测电路中,选择对应的档位,流过的电流在取样电阻上会产生电压,将此电压值送入A/D模数转换芯片,由模拟量转换成
[测试测量]
<font color='red'>数字式</font>万用表如何测量电流
数字式光伏阵列模拟器的设计研究
全球性的 能源 危机迫使越来越多的国家开始重视新 能源 的研究,光伏发电作为其中很重要的一种也得到了广泛研究。但是,由于光伏 电池 造价高,导致研究成本很高,不利于其初期的研究。因此,很有必要设计一种成本较低,能够代替实际光伏 电池 阵列来进行各种光伏实验的太阳能电池 模拟 器。 本文所设计的太阳能电池模拟器以 BUCK 电路 为基础,采用 ARM 控制 ,并加入了电流 PI 控制 方式来改善系统动态性能和稳态精度。此外,本文还采用四折线法来对光伏电池阵列的特性曲线进行分段拟合,并进行了仿真验证。 1 系统设计目标 1.1 太阳能电池板伏安特性曲线 图 1 所示是太阳能电池板输出 I-U 特性曲线随日照、温
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved