嵌入式技术在推焦数据采集系统中的应用

发布者:和谐相伴最新更新时间:2009-01-19 来源: 单片机与嵌入式系统关键字:推焦  数据采集  A/D 手机看文章 扫描二维码
随时随地手机看文章

引 言
      在炼焦生产中,推焦时间、平煤时间、推焦电流等数据是反映焦炉实际操作情况的重要指标。由于推焦车是室外移动装置,而采集好的数据需及时传送到中心主控室的计算机中完成数据的分析、处理和记录,因此为了实现推焦过程的有效监测,需要解决数据采集和数据通信这两大问题。

1 监控系统的基本结构
      按项目要求,中心主控站能对2个移动距离达200 m的推焦车上的电流信号进行数据采集,所以采用无线数据传输的模式,通过无线数传电台控制推焦车上的从站接收主控站的命令,并接收从站发出的推焦电流等模拟量以及炉号等数字量信息。系统的基本结构如图l所示,其中上位机(主站)由1个PC终端和D2lDL无线数传模块(含天线)组成,二者之间通过串口通信。

      鉴于数据库技术已经相当成熟,中心主控站的数据管理可以较容易地实现,所以关键技术就在于下位机对现场数据的实时采集,以及下位机与上位机之间可靠的无线数据传输。

2 下位机的硬件组成
      下位机以ARM7微控制器为核心,利用ARM7内核对外围设备,包括无线数传模块、LCD显示模块、模拟/数字信号输入、键盘扫描,进行控制和管理,基本框架如图2所示。

      (1)ARM控制板
      控制板是下位机的核心,控制系统的各个功能模块。控制板的MCU采用Atmel公司的 AT91SAM7S64芯片,它有64 KB高速Flash和16 KB的SRAM,片内主要有存储器控制器、复位控制器、时钟发生器、电源管理控制器、先进中断控制器、周期性间隔定时器、时间窗看门狗、实时定时器、并行输入/输出控制器、外设数据控制器、USB2.O全速设备接口、同步串行控制器、通用同步/异步收发器、主从串行外设接口、3通道16位定时器/计数器、4通道16位PWM控制器、两线接口、8通道10位A/D。控制板的外围电路主要包括电压转换电路、串口输入/输出控制电路、JTAG电路、模拟量数字量输入/输出电路、时钟芯片控制电路、USB接口电路、EEPROM电路等。
      (2)液晶显示模块
      下位机的本地显示功能通过控制带有SEDl335控制器的液晶显示模块实现。SEDl335是日本Seiko Epson公司生产的液晶显示控制器。它的输入/输出缓冲器功能较强,指令功能丰富,并行发送4位数据,最大驱动能力为640×256点阵。SEDl335硬件结构由MCU接口、内部控制和驱动LCM组成。
      (3)无线数传模块
       由于推焦车要在较大范围移动,因而采用无线数据传输是一种较好的选择。北京捷麦公司生产的SA68D21DL无线数据收发模块是一种可在微机与微机之间或微机与单片机之间进行全双工远距离无线通信的收发模块,它还可以脱离微机组成多点报警、遥控系统。其主要特点为:串口具有TTL、RS232、RS485等多种电平接口;内含EE—PROM看门狗电路,可掉电记忆设置参数;发送/接收距离为1~3 km。
      (4)电流变送器模块
      在电力电子产品中,对大电流进行精确的检测和控制是产品安全可靠运行的根本保证。推焦车设备中,最大电流可达400 A。经多方调研比较,采用北京森社公司生产的霍尔电流变送器模块,其主要特点为:工作区内精度高于1%;动态性能响应时间小于lms,跟踪速度高于50 A/ms;平均无故障工作时间>50 000小时;易于安装。

      (5)键盘控制模块
      传统的行列式编码数字键盘要占用很多I/O引脚,而基于A/D转换器的键盘一般只用一个I/O引脚就能读取多个按键。其工作原理为:键盘由一系列分压电阻和按键组成,不同的按键对应着不同的分压电阻,从而得到不同的分压及不同的A/D转换数值。这种键盘只能识别单个按键按下的情况,本键盘只有12个按键,现场操作人员只需输入炉号1~10以及“确认”、“取消”键,因此完全满足要求。

3 下位机的软件设计
     
软件模块包括串口控制程序、A/D数据采集、无线模块收发控制、LCD更新显示控制、定时器控制和按键扫描输入控制部分。
      由于下位机工作模式简单,出于精简代码量以及程序稳定性的考虑,未在控制器中使用操作系统等复杂的进程调度机制。下位机上电后直接运行主程序,完成初始化过程之后进入主循环,接收上位机发送的命令并据此进行相关操作。对于实时性要求较高的数据采集、LCD屏显示更新和键盘扫描任务,则在定时器中断服务程序中完成。
      主程序主要包括系统初始化(初始化MCU、总线、I/O端口、LCD、A/D、参数、串口等)、无线数传模块设置(读取并设置地址和身份码)、显示开机画面、开定时器中断、接收串口数据、数据校验和发送数据。中断控制程序包括键盘扫描、判断键值响应按键、模拟量和数字量采样以及按照协议将数据填充到发送数组。
3.1 对LCD显示屏的控制
      ARM系统使用12个I/0端口控制内置SED1335控制器的显示屏。其中4个端口为控制命令端口,8个端口为数据端口,端口控制信号图如图3所示。

      AT91SAM7S64并行输入输出控制器(PIO)管理多达32个全可编程I/O线。对于LCD显示屏的控制,实际上是根据SED1335控制器的时序进行操作,即通过PIO控制器控制并行数据输出。
      程序的具体实现就是先总线初始化,配置控制LCD的8条数据总线和4条命令总线,设置外围设备时钟使能寄存器(PCER)、上拉禁止寄存器(PPUDR)、多驱动禁止寄存器(MDDR)、输入滤波禁止寄存器(IF—DR)、输出写使能寄存器(0WER)、PIO使能寄存器(PER)、输出使能寄存器(OER)和输出数据寄存器(S0一DR)。
3.2 对无线数传电台模块的控制
      AT91SAM7S64的USART,支持与使能由发送器到接收器的数据传输的外设数据控制器的连接,可管理多类型串行同步或异步通信。推焦车上的下位机通过USART口同无线数传电台模块通信,控制电台接收和发送数据,相关接口的核心芯片是MAX3232EEA,具体电路如图4所示。

      串口的初始化包括初始化外设I/0,使能时钟,配置串口工作模式(如波特率)等,使能串口;串口接收采用超时接收,其含义是:当串口收到1字节的数据后,若在一定时间间隔内收到另外1字节数据,则可认为后1字节同前1字节为同一包数据中的内容,若在一定时间间隔内未收到数据,则认为此包数据接收结束。这时,串口状态寄存器的相应位置1,通过查询状态寄存器该状态位的值可判断是否接收结束。串口数据发送只要设置好发送数据寄存器和发送数据计数器,即可开始发送。
3.3 系统中定时器的作用
      本系统通过AT91SAM7S64的定时器/计数器模块控制数据采集周期、按键扫描和LCD更新。AT91SAM7S64定时器/计数器(TC)包括3个相同但相互独立的16位定时器/计数器通道。
      每个通道有3个外部时钟输入,5个内部时钟输入及2个可由用户配置的多功能输入/输出信号。每个通道驱动一个可编程内部中断信号来产生处理器中断。定时器/计数器有2个作用于这3个通道的全局寄存器。块控制寄存器允许使用同样的指令同时启动3个通道。块模式寄存器为每个通道定义外部时钟输入,允许将它们连接。另外,每个通道有一个16位寄存器,寄存器值在所选时钟每个上升沿处自减,当计数器达到0xFFFF并转为0x0000时,表明发生溢出,TC_SR(状态寄存器)中COVFS位置1。

      定时器初始化包括设置定时器时钟,配置模式寄存器,设置定时器中断等。
      定时器中断25 ms进行一次A/D转换,控制采集A11、A12模拟信号输入,以及键盘信号的扫描。由于AI模拟信号每250 ms采集一组,所以每进入10次中断将最近5次采集到的AI信号进行去极值求平均数操作,并装入发送数组通过串口发往无线数传模块;而键盘按键信号由于要求较高的实时性,所以每25ms判断一次。之所以把AI数据采集和键盘扫描放在同一个定时器中,是因为这两个功能模块均用到了ADC控制器;若放在两个定时器中断中分别对ADC控制器进行操作,则会造成资源访问冲突,导致程序跑飞和系统瘫痪。当判断按键输入部分结束,对按键将作出实时响应,主要体现在LCD的显示内容上。每250 ms采集一组AI信号时,同样也会将采集到的数据转换为工程量通过LCD显示出来,实现数据的本地实时显示。
3.4 系统中A/D的使用
      A/D是一个数据采集系统的基础,其信号采集精度和采集周期直接决定了系统的准确性和实时性。在AT91SAM7S64芯片内,8路模拟量通过1个八选一复用开关后进行A/D转换,相应的转换结果送入一个所有通道可用的通用寄存器,即通道专用寄存器中,可配置为软件触发、外部触发ADTRG引脚上升沿或内部触发定时器/计数器输出。ADC支持8位或10位的分辨率,默认情况为10位分辨率;对于所有通道只需要一个启动命令来初始化转换序列。ADC硬件逻辑对工作通道自动执行转换,然后等待新请求;当转换完成后,10位数字结果存于当前通道的通道数据寄存器(ADC_CDR)及ADC最后转换数据寄存器(ADC_LCDR)中。
      本系统中,用AT91SAM7S64芯片的ADC控制器定时对相应通道的模拟量进行采集。另外,系统还通过A/D读取键盘数据,根据ADC转换值的不同判断按键。ADC的初始化包括初始化时钟、复位ADC、配置模式寄存器、设置A/D通道等。在本系统中,程序使能4路A/D通道,2路用于对反映推焦参数的模拟信号进行数据采集,另外两路用于对键盘按键信号进行判断控制。相关程序如下:


      对于所采集的数据,需要进行数字滤波以减少外界干扰的影响。综合考虑电磁环境以及算法复杂度等因素,采用去极值的平均滤波算法,即对短时间内采集到的数据,去除最大值和最小值,把其余值的平均数作为一次数据采集的信号量。
      对于键盘按键信号,每个按键按下产生的模拟量值都在一个特定的区间范围内。从软件上看,只需要判断采集按键信号的2路A/D转换值处在哪个区间内,即可判断出哪个键被按下,并且增加相关保护程序,使按键长时间按下不会重复响应,以防止误操作。

结 语
      与现有的推焦数据采集系统相比,本系统有以下几个特点:将通过A/D采集到的模拟量经过工程量转换后,在LCD显示屏上实时显示,便于推焦车操作及维护人员直观监测数据的变化情况并作相应调整;上位机发送过来的炉号信息和时间信息也在LCD显示屏显示,增强了控制命令的可视性,降低了误操作的可能;采用无线数传模块实现上位机与下位机之间的数据通信,并通过软件校验的方式使传输的误码率降低到系统允许的范围。
      此推焦数据监控系统已经交付贵州、山西和山东等地的一些焦化厂使用,达到了预期的运行效果。

关键字:推焦  数据采集  A/D 引用地址:嵌入式技术在推焦数据采集系统中的应用

上一篇:东方嘉科推出ARM9核心模块COM9263
下一篇:基于ARM的MPEG-4软解码器的优化与实现

推荐阅读最新更新时间:2024-03-16 12:24

16位高速A/D转换器在高速DSP处理器中的应用
  由于DSP有先进的并行结构使其特别适合于信号处理,故已经越来越多的应用于工业控制领域和各类仪器仪表的开发设计。而在用数字信号微处理器构成的智能仪器仪表中,外部的各种模拟信号必须通过A/D转换器变换为数字信号后才能送入微处理器芯片。而BB公司的高精度转换器ADS7805具有较高的性能价格比,最高的转换频率可达100KHz,在仪器仪表中得到广泛的应用。ADS7805芯片有28脚双排直插式或贴片式封装,只需单端5V电源供电即可正常工作;芯片内部含有采样保持、电压基准和时钟等电路,极大简化用户的电路设计,同时提高了系统的稳定性。ADS7805采用CMOS工艺制造,功耗低(最大功耗为100mW),单通道输入,模拟输入电压的范围为±10V
[嵌入式]
基于ADμC812的在系统可编程数据采集电路的设计
1在系统可编程   在系统可编程(In System Programmable,ISP)技术使得使用者能够在目标系统中,或者在电路板上对可编程器件进行编程或反复编程。这个编程过程可在系统的开发、制造过程中甚至在应用现场进行。   在系统可编程器件的编程通常通过PC机实现。在编程过程中,器件无需从电路板上拔除,所需要的编程电压与器件的工作电压相同,不需要专门的编程器支持。 2ADμC812介绍 2.1ADμC812的总体介绍   ADμC812是一种把8位微控制器(指令集与8051微控制器兼容)和12位A/D转换器以及12位D/A转换器等外围电路集成在一块芯片上的12位数据采集集成电路,他的结构框图如图1所示。   
[单片机]
MCC以太网数据采集卡入驻现货联盟
面向电子行业的特色元器件、组件采购的大型电子交易平台现货联盟(www.xhlm365.com)宣布,Measurement Computing(以下简称MCC)的4款以太网数据采集卡产品已成功登陆现货联盟网上交易平台。 MCC是一家领先的数据采集方案设计商、制造商和供应商,致力于测试与测量等应用领域。公司设计并制造易于使用、集成和支持的数据采集设备,为编程人员和非编程人员提供丰富的软件相关选项。免费技术支持,使得MCC成为数据采集应用中的首选。 此次入驻现货联盟网上交易平台的产品有以下四个型号可供选择:16位多功能以太网数据采集卡E-1608、基于以太网的8通道热电偶测量设备E-TC、基于以太网的24路数字I/O设备E-D
[网络通信]
基于CPLD的多路数据采集系统的设计
数据采集系统具有极强的通用性,可广泛应用于军事、工业生产、科学研究和日常生活中。随着计算机的普及,数据采集系统在日常生活中的应用越来越显著。由于基于DSP芯片的高速电子器件成本和制作工艺,以及高密集的技术含量,使得高速数据采集卡的价格昂贵。而复杂可编程逻辑器件(CPLD)能够将大量的逻辑功能集成于一个单片集成电路中,以其时钟频率高,内部延时小,速度快,效率高,组成形式灵活等特点在高速数据采集方面有着单片机和DSP无法比拟的优势。 1 设计思路 该系统由数据输入单元、数据处理单元、数据输出单元三大部分组成。其中数据输入单元是由状态机控制ADC0809实现。输入信号可以是各种形式,它可以是语音信号、调制后的电话信号、编码的数
[测试测量]
基于CPLD的多路<font color='red'>数据采集</font>系统的设计
基于TLC5540的高速数据采集卡设计
摘要:介绍TLC5540芯片的引脚排列及特点,提出一种利用TLC5540设计高速数据采集卡的方法。采样时序和存储时序的巧妙控制是本文的重点。采集卡的采样速率和存储速率可以达到40MHz。 关键词:TLC5540 高速数据采集 时序 控制 在高速数据采集卡中,核心部分是高速模数转换器。随着制造ADC的技术不断技术,美国的TI公司和ADI公司都开发出采样速度在100Msps,但价位低廉的器件。本设计采用TI公司的TLC5540,其特点是: *8位分辨率; *最高转换速率达40Msps; *内部采样和保持功能; *模拟输入带宽≥75MHz(典型值); *内部基准电压产生器。 它的引脚排列和功能如图1所示。 其中O
[应用]
多通道数据采集测试系统NSAT-4000在应用中具有哪些优势
可以同时采集50多个波形的多通道数据采集测试系统是NSAT-4000多通道数据采集系统。 系统的优势如下: 1. 数据采集:接收示波器采集的数据,然后进行处理并在界面显示; 2. 网络通信;USB协议转化为TCP/IP协议,实现数据传输; 3. 测试报告:将采集的数据、图片进行存储,然后生成测试报告; 4. 日志记录:系统可以满足所有历史测试的数据记录,方便查找; 5. 本系统可以实现 10 个通道采集数据; 6. 本系统可以在不低于 50kV/m 的 NEMP 辐射场下正常工作; 7. 本系统可以在-10~40℃下稳定工作; 8. 本系统可以将示波器采集到的图像以 CSV 文件格式保存到本地; 9. 本系统可以动态的显示电池
[测试测量]
多通道<font color='red'>数据采集</font>测试系统NSAT-4000在应用中具有哪些优势
多通道零相位差数据采集系统设计与实现
引言 ---- 数据采集技术是以前端的模拟信号处理、数字化、数字信号处理和计算机等高科技为基础而形成的一门综合技术,是联系模拟世界和数字世界的桥梁。它在许多领域得到了广泛的应用。数字技术促进了上述这些领域的发展,而反过来又对数据采集系统提出了愈来愈高的要求,本文所设计的16位16通道零相位差数据采集系统不仅具有较高的转化精度,而且提供多通道零相位差特性。正是由于各通道之间的信号在数字化之后,不存在相位差,这对那些诸如声纳阵列、多点振动检测、电力系统监测等需要对多路信号进行相位相关特性分析的事件而言,使用这种采集系统就特别有意义。USB接口的普遍性使本系统很容易与PC机接口。 1 系统设计 ---- 16位16通道零相位差数据采
[模拟电子]
C8051F021型单片机实现数据采集系统
介绍的功角测量数据采集卡是采用Cygnal公司C8051F021型单片机实现的PCI总线接口卡。该卡通过2片双口RAM分别实现与GPS接收板和上位机(PC)的数据交换,从而实现高速、可靠的数据采集、处理与传送。本数据采集卡采用片内12位高速ADC并配以片外采样保持电路,通过直接交流采样方法精确快速地实现对电压和电流的采样,保证了电力系统实时测量的要求。   1 引言   实现自动化的过程中,首要环节就是数据采集。为此我们研究开发了电力系统功角广域测控系统,其中,用C8051F021型单片机实现的数据采集卡不仅可以准确、高效、实时地进行AD数据采集并通过双口RAM和PCI接口与上位机交换数据,还可以通过与GPS接收通信接收秒
[工业控制]
C8051F021型单片机实现<font color='red'>数据采集</font>系统
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
502 Bad Gateway

502 Bad Gateway


openresty
设计资源 培训 开发板 精华推荐

502 Bad Gateway

502 Bad Gateway


openresty
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

502 Bad Gateway

502 Bad Gateway


openresty
502 Bad Gateway

502 Bad Gateway


openresty
502 Bad Gateway

502 Bad Gateway


openresty
随便看看
    502 Bad Gateway

    502 Bad Gateway


    openresty
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
502 Bad Gateway

502 Bad Gateway


openresty