汽车空调温度控制系统设计

发布者:skyhcg最新更新时间:2011-08-02 关键字:汽车空调  温度控制系统 手机看文章 扫描二维码
随时随地手机看文章

    前言:

    本文是从物联网的角度出发提出一种以GSM 无线网络为基础, 通过温度传感器, 将用户手机、汽车空调组合成一个小型物联网的应用设计。现代汽车中的空调一般是利用手工进行控制的,空调只有等到司机进入驾驶室才能开启或关闭,这就使得在炎热的夏天或寒冷的冬天, 刚进入车内时由于空调没有开启,人会感觉到异常的燥热或寒冷,因此设计和制造出能监控车内温度并根据监测到的温度情况来进行提前远程控制开启车内空调系统的设备便提到人们日常生活的议事日程上来,本设计就是为满足这一要求而提出来的。

    1 系统的组成和工作原理

    系统是由两大部分组成, 一部分是由STC89C52RC单片机为中心的温度采集和继电器控制部分, 另一部分是以GSM 移动通信网、TC35I 和用户手机组成的数据的远程传输部分。系统的组成框图见图1 所示。

图1 系统组成方框图

    系统的工作原理是: 用户通过手机发一条温度查询指令, 指令以短消息的方式通过GSM 短信息服务中心发送到安装在车内的TC35I, 模块接收到指令后通过串口把指令传送到STC89C52RC 单片机, 单片机启动DS18B20 采集车内温度信息, 再通过单片机和TC35I 把采集到的温度信息通过GSM 短信息服务中心传回到用户手机上, 如果车内温度过高或过低, 则用户可通过指令控制车内继电器开关来开启车内空调从而达到致冷或致热的效果。

    2 系统的硬件设计

    系统的硬件设计部分包括微控制器模块、DS18B20温度采集模块、继电路开关控制模块、电源模块和TC35I模块。

    2.1 微控制器模块

    微控制器模块主要完成温度的采集、继电器开关的控制及和TC35I 的串口通信等。考虑到模块的驱动能力、功耗及性价比等因素, 系统采用宏晶公司的STC89C52RC 芯片, 该款芯片具有功耗低、控制和抗干扰能力强、性价比高的优点。微控制器具有8 KB 的FlashROM 存储器,512 B 的RAM 和2 KB 的EEPROM 存储器, 内部还集成了看门狗电路和UART, 具有在系统编程和在应用编程的功能, 无需专门的仿真器和编程器,因此选用该款控制器可以为本系统的设计带来很大的便利。

    2.2 温度采集模块

    系统中的温度采集模块采用DALLAS 公司生产的高精度、高可靠性的DS18B20 温度传感器, 它具有体积小、硬件开销低、抗干扰能力强、精度高的特点, 采用单总线数据通信, 全数字温度转换及输出, 最高12 位分辨率,精度可达±0.5℃, 检测温度范围为-55℃~+125℃, 因此它能满足本系统的设计要求。DS18B20 与微控制器的连接电路见图2 所示。

图2 STC89C52RC 微控制器模块和DS18B20 的连接电路图

    2.3 继电器开关控制模块

    继电器开关模块由TLP521 -4 、ULN2803 和SRD -12VDC 及三极管构成, 由微控制器输出的信号经过三极管构成的开关电路送往TLP521 -4 光耦芯片再通过ULN2803 达林顿管的放大后用来驱动SRD-12DC 继电器, 进而达到控制空调的各种开关的作用, 继电器开关控制模块与微控制器的电路连接图如图3 所示。

图3 继电器控制模块电路图

    2.4 TC35I 模块

    TC35I 模块是Simens 推出的一款双频900/1800 MHz高度集成的GSM 模块。它设计小巧、功耗很低, 可以为很多通信应用提供经济高效的解决方案。它支持EGS900 和GSM1800 双频, 数据传输的内容支持语音、数据、短消息和传真服务, 通信接口采用RS232( 指令和数据的双向传送),供电电源采用单电源3.3 V~5.5 V 的电压, 适用的范围包括: 便携电脑的低功耗通信设备、遥测遥感、远程信息处理和通信等工业领域。本系统中TC35I 与微控制器的电路连接图如图4 所示。

图4 TC35I 模块电路连接图[page]

 

    2.5 电源模块

    系统电源模块采用了LM78L05 和LM2941S 两芯片将外部12 V 的直流供电电压转换为系统所需要的5 V和4.2 V 的电压, 电源连接电路图如图5 所示。

图5 电源连接电路图

    3 系统的软件设计

    系统的软件模块部分主要包括GSM 通信模块、DS18B20 温度采集模块和继电器开关控制模块部分的软件设计, 系统的工作流程如图6 所示。

图6 系统工作流程图

    3.1 GSM 通信模块的程序设计

    GSM 通信模块的程序则由TC35I 通过微控制器的串口发送与GSM 短信息有关AT 指令来和用户手机进行交互的, 其具体的工作流程如图7 所示, 另外本系统中执行的AT 指令[ 2 ,5]如表1 所示。

表1 系统中执行的AT 指令

  3.2 DS18B20 温度采集模块的程序设计

  温度采集模块部分的程序设计也主要由微控制器通过单总线的方式来完成DS18B20 的初始化并根据用户手机发过来的指令读取温度信息并反馈给用户手机,其工作流程图如图8 所示。

  继电器开关控制部分的软件设计主要是根据用户从手机发过来的开关指令, 由微控制器通过置位或复位相关的端口来达到的。

图7 TC35I 工作流程图

图8 DS18B20 工作流程图

    总结:

    本文提出了一种以GSM 短信息中心为基础的远程汽车空调温度控制系统的设计方法, 经实际的制作和调试验证, 该系统能够稳定、可靠地运行, 该系统还具有扩展方便、无线传输距离远,可广泛应用于远距离控制领域。

关键字:汽车空调  温度控制系统 引用地址:汽车空调温度控制系统设计

上一篇:基于单片机的智能家居安防系统设计方案
下一篇:基于AT25T1024 FLASH的高速SPI接口设计

推荐阅读最新更新时间:2024-03-16 12:39

基于模糊PID算法的电阻炉温度控制系统设计
引言 电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。 将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。 基于PID控制算法,以ADuC84
[工业控制]
基于模糊PID算法的电阻炉<font color='red'>温度</font><font color='red'>控制系统</font>设计
基于神经网络和DSP的锡炉温度控制系统的研究
  现代电子元件 装配要求锡炉焊接温度更加稳定,对锡炉高温控制的难度也就增强。随着预测神经网络的应用研究不断深入,由于其运算数据量大、收敛比较慢的特点,使其应用受到了硬件上的限制,实际应用并不多。但DSP高速数字信号处理速度越来越快,在线实时控制能力越来越强,在结合神经网络的应用方面效果显著。本文采用神经网络的预测能力对温度参数进行学习和调整,同时结合数字信号处理(DSP)模块进行控制和运算,实现高速运算处理控制,最终实现了锡炉温度控制系统在线实时补偿加热控制。   1 神经网络控制结构   神经网络对事件预测是一种很好的数据处理技术,在学习过程中发现规则,通过预测和DSP运算处理控制相结合来学习及调节控制函数的参数。基于神经
[嵌入式]
基于MSC1201微处理器的温度控制系统的实现
1 引言   随着现代控制技术的发展,在工业控制领域需要对现场数据进行实时采集,在一些重要场合对数据采集的要求更高,例如在电厂、钢铁厂、化工领域的生产中都需要对大量数据进行现场采集,而温度采集又是其中极为重要的部分,因此,需要一种高精度、低成本的数据采集与控制系统。    为了方便地实现温度采集与控制系统,笔者选用 MSC1201 作为系统 的 MCU 。 MSC1201 是的德州仪器 ( TI ) 新推出的一款低噪声、低成本数据采集微处理器,它具有的增强型 8051 内核,执行速度比标准 8051 内核快 3 倍,而功耗却更低, MSC1201 中的 ADC
[工业控制]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved