三种单片机模拟串口方法介绍

发布者:幸福自在最新更新时间:2011-10-09 关键字:单片机  模拟串口 手机看文章 扫描二维码
随时随地手机看文章
模拟串口就是利用51的两个输入输出引脚如P1.0和P1.1,置1或0分别代表高低电平,也就是串口通信中所说的位,如起始位用低电平,则将其置0,停止位为高电平,则将其置1,各种数据位和校验位则根据情况置1或置0。至于串口通信的波特率,说到底只是每位电平持续的时间,波特率越高,持续的时间越短。如波特率为9600BPS,即每一位传送时间为1000ms/9600=0.104ms,即位与位之间的延时为为0.104毫秒。单片机的延时是通过执行若干条指令来达到目的的,因为每条指令为1-3个指令周期,可即是通过若干个指令周期来进行延时的,单片机常用11.0592M的的晶振,现在我要告诉你这个奇怪数字的来历。用此频率则每个指令周期的时间为(12/11.0592)us,那么波特率为9600BPS每位要间融多少个指令周期呢?
指令周期s=(1000000/9600)/(12/11.0592)=96,刚好为一整数,如果为4800BPS则为96x2=192,如为19200BPS则为48,别的波特率就不算了,都刚好为整数个指令周期,妙吧。至于
别的晶振频率大家自已去算吧。

现在就以11.0592M的晶振为例,谈谈三种模拟串口的方法。

方法一:延时法

     通过上述计算大家知道,串口的每位需延时0.104秒,中间可执行96个指令周期。
#define uchar unsigned char
sbit P1_0 = 0x90;
sbit P1_1 = 0x91;
sbit P1_2 = 0x92;
#define RXD P1_0
#define TXD P1_1
#define WRDYN 44 //写延时
#define RDDYN 43 //读延时

//往串口写一个字节
void WByte(uchar input)
{
     uchar i=8;
     TXD=(bit)0;                     //发送启始

     Delay2cp(39);
     //发送8位数据位
     while(i--)
     {
         TXD=(bit)(input&0x01);     //先传低位
         Delay2cp(36);
         input=input>>1;
     }
     //发送校验位(无)
     TXD=(bit)1;                     //发送结束

     Delay2cp(46);
}

//从串口读一个字节
uchar RByte(void)
{
     uchar Output=0;
     uchar i=8;
     uchar temp=RDDYN;
     //发送8位数据位
Delay2cp(RDDYN*1.5);         //此处注意,等过起始位
     while(i--)
     {
         Output >>=1;
         if(RXD) Output   =0x80;     //先收低位
         Delay2cp(35);             //(96-26)/2,循环共
占用26个指令周期
     }
     while(--temp)                     //在指定的
时间内搜寻结束位。
     {
         Delay2cp(1);
         if(RXD)break;             //收到结束位便退出
     }
     return Output;
}

//延时程序*
void Delay2cp(unsigned char i)
{
     while(--i);                     //刚好两个
指令周期。
}

     此种方法在接收上存在一定的难度,主要是采样定位存在需较准确,另外还必须知道
每条语句的指令周期数。此法可能模拟若干个串口,实际中采用它的人也很多,但如果你用Keil
C,本人不建议使用此种方法,上述程序在P89C52、AT89C52、W78E52三种单片机上实验通过。

方法二:计数法

     51的计数器在每指令周期加1,直到溢出,同时硬件置溢出标志位。这样我们就可以
通过预置初值的方法让机器每96个指令周期产生一次溢出,程序不断的查询溢出标志来决定是否
发送或接收下一位。
    
//计数器初始化
void S2INI(void)
{
     TMOD =0x02;                 //计数器0,方式2
TH0=0xA0;                     //预值为256-96=140,十六进制A0
     TL0=TH0;        
     TR0=1;                         //开始计数
     TF0=0;
}

void WByte(uchar input)
{
     //发送启始位
     uchar i=8;
     TR0=1;
     TXD=(bit)0;
     WaitTF0();
     //发送8位数据位
     while(i--)
     {
         TXD=(bit)(input&0x01);     //先传低位
         WaitTF0();
         input=input>>1;
     }
     //发送校验位(无)
     //发送结束位
     TXD=(bit)1;
     WaitTF0();
     TR0=0;
}    
//查询计数器溢出标志位
void WaitTF0( void )
{
     while(!TF0);
     TF0=0;
}
     接收的程序,可以参考下一种方法,不再写出。这种办法个人感觉不错,接收和发送
都很准确,另外不需要计算每条语句的指令周期数。

方法三:中断法

     中断的方法和计数器的方法差不多,只是当计算器溢出时便产生一次中断,用户可以
在中断程序中置标志,程序不断的查询该标志来决定是否发送或接收下一位,当然程序中需对中
断进行初始化,同时编写中断程序。本程序使用Timer0中断。
#define TM0_FLAG P1_2 //设传输标志位
//计数器及中断初始化
void S2INI(void)
{
     TMOD =0x02;                 //计数器0,方式2
TH0=0xA0;                     //预值为256-96=140,十六进制A0
     TL0=TH0;        
     TR0=0;                         //在发送或
接收才开始使用
     TF0=0;
     ET0=1;                         //允许定时
器0中断
     EA=1;                         //中断允许
总开关
}

//接收一个字符
uchar RByte()
{
     uchar Output=0;
     uchar i=8;
TR0=1;                         //启动Timer0
TL0=TH0;
     WaitTF0();                     //等过起始

     //发送8位数据位
     while(i--)
     {
         Output >>=1;
         if(RXD) Output   =0x80;     //先收低位
WaitTF0();                 //位间延时
     }
     while(!TM0_FLAG) if(RXD) break;
     TR0=0;                         //停止
Timer0
     return Output;
}
//中断1处理程序
void IntTimer0() interrupt 1
{
     TM0_FLAG=1;                 //设置标志位。
}
//查询传输标志位
void WaitTF0( void )
{
while(!TM0_FLAG);
TM0_FLAG=0;                 //清标志位
}
     中断法也是我推荐的方法,和计数法大同小异。发送程序参考计数法,相信是件很容
易的事。
另外还需注明的是本文所说的串口就是通常的三线制异步通信串口(UART),只用RXD、TXD、GND。
//**************************************************************
*********************************

AVR软件模拟串口程序

来源:coldra资料室   作者:coldra


输出:用定时器控制普通IO口输出位
输入:用外部中断+定时器,判断位的宽度

好几天没休息,利用闲暇写的,也没找到别人的参考程序,不过终于算是稳定了,其实还应该有很多其它的方法可以试一下,比如用PWM输出串行数据,用输入捕获接收数据,或定时查询,或用任意一个IO口中断,则每个引脚都有可能

现在还有些问题,全双工同时收发时发送偶尔出错,占用两个定时器有些浪费,以后再修改吧,最好加上各种波率

本程序为直接摘出部分,删了无关的部分,在此可能有些变量没用,或有段落遗漏,请谅

#include
#include
#include
#include

#define Sbit1() PORTD =1<#define Sbit0() PORTD&=~(1<

volatile unsigned int
eep_ms,//毫秒计时
keytime,                     //等待时间
SoundOnTime;                     ////
volatile unsigned   char  
rdata,
key,
start=0,
keycode,         //
*TxPoint,
rtime,
INT0_time,                 //中断次数

RxLength=0,         //接收长度
RUDR,             //摸拟串口接收的数据
TxLength,                     //串口发送数据长度
SUDR;                         //串口发送的数据

unsigned char arr[10],DispBuff[10];


void Initial_IO(void)//IO口初始化
     {
      DDRD = 0X82;               //PD1串口输出,PD0串口输入,PD2模拟串口输入(INT0)
      PORTD = 0X82;              //PD1输出高电平
     }

void Initial_INT0(void)
     {
     EICRA =(1<      EIMSK =1<     }

void Initial_timer0(void)                          //定时器0初始化
     {
      TCCR0B =(1<      TIMSK0 =(1<     }

void Initial_timer1(void)
     {
      TCCR1A=(1<           TCCR1B=(1<      ICR1=1000;
      TIMSK1 =(1<     }

void Initial_timer2(void)
     {
      TCCR2B=(1<      TIMSK2 =(1<     }


void Initial_WDR(void)                                        //看门狗初始化
     {
     wdt_enable(WDTO_1S);
     wdt_reset();
     }


void Initial(void)
{
     Initial_IO();
     Initial_timer0();
     Initial_timer1();
     Initial_timer2();
     Initial_INT0();
     Initial_WDR();
     sei();
}


/*启动串口发送*/
void SendData(unsigned char *P,unsigned char DataLength)
     {
     TxLength=DataLength;
     TxPoint=P;  
     start=0;
     }
    

int main (void)
     {

     Initial();

     while(1)
         {
         wdt_reset();
         if((rdata)&&(eep_ms>10))//收到数据延时10mS后启动发送,回送验证数据
             {
             key=0;
             SendData(&DispBuff[0],9);//发送DispBuff[0]的9位数据
             while(TxLength);//等待发送完成
             rdata=0;
             eep_ms=0;
             }
         }
     }


/*定时器0,100us溢出中断*/
SIGNAL(SIG_OVERFLOW0)
     {
     TCNT0=151;//重载数据,计时区间为151---255,共104uS,一个位的时间
     if(TxLength)//
         {
         if(start==0)
             {
             Sbit0();//起始位
             SUDR=*(TxPoint++);
             }
         else
             {
             if((start<=8))
                 {
                 if(SUDR&(1<<(start-1)))Sbit1();//数据1
                 else Sbit0();//数据0
                 }
             else Sbit1();//停止位
             }
         if(start<10)start++;
         else  
             {
             TxLength--;//一字节 发送完成,字节数减1
             start=0;
             }//
         }
     }

/*定时器1,1ms溢出中断*/
SIGNAL(SIG_OVERFLOW1)
{
     eep_ms++;
}
/*定时器2*/  
SIGNAL(SIG_OVERFLOW2)
     {
     sei();    
     if(INT0_time)//有数据
         {
         INT0_time=0;//中断次数清0
         rdata=1;//置有数据标志
         eep_ms=0;
         if(RxLength<10)DispBuff[RxLength++]=RUDR;
        
         }
     if(rtime<4)rtime++;//字节间隔时间,间隔3个字节重新开始一帧
     else RxLength=0;
     }
    
SIGNAL(SIG_INTERRUPT0)//INT0,边沿触发中断
     {
     unsigned char temp,temp2=0;
     static unsigned char pre_TCNT2,j=0;
     if(INT0_time==0)//一个字节第一个下降沿中断,起始位开始
         {
         TCNT2=130;
         pre_TCNT2=130;
         RUDR=0xff;//接收的数据初值
         j=0;     //位数清零
         INT0_time++;//中断次数加一
         }
     else  
         {
         temp=TCNT2;
         if(temp>pre_TCNT2)temp2=temp-pre_TCNT2;//取一个高/低电平的宽度
         if(temp2>10)//滤过窄电平(干扰信号)
             {
             pre_TCNT2=temp;//记录前一次的时间值
             temp=0;
             while(temp2>13)//计算位的个数,约13为一个位(8*13=104uS)
                     {
                     temp2-=13;//
                     temp++;
                     }
             if(temp2>6)temp++;//计算位的个数,一般13为一个位
             if(INT0_time==1)temp-=1;
             if(INT0_time&1)//奇数次中断
                 {
                 while(temp)//位0的个数
                     {
                     RUDR&=~(1<                     temp--;
                     j++;
                     }
                 }
             else j+=temp;//偶数,位1的个数,跳过
             INT0_time++;//中断次数加一
             }
         }
     rtime=0;
     }
关键字:单片机  模拟串口 引用地址:三种单片机模拟串口方法介绍

上一篇:采用单片机C8051F060的智能功率柜的原理及设计
下一篇:基于DS1302+AT89C2051制作的红外遥控LED电子钟

推荐阅读最新更新时间:2024-03-16 12:43

如何使用Keil3开发51单片机程序
1.双击图标打开Keil软件 2.单击菜单栏 - 3.将新工程保存到一个文件夹 4.选择一款 CPU 芯片,这里STC89C52RC对应着Philips的P89V51RD2 5.提示是否复制8051的启动代码到文件夹,这里选择“否” 6.完成后,在Project Workspace中可以看到Source Group1 7.新建一个代码文件 8.以“*.c”作为后缀名保存 9.将刚刚保存的文件 led .c添加到工程中来 10.选中源代码文件,添加 11.可以看到led.c已经在Source Group1中 12.添加代码如下 13.单击 工具 栏上的“Op
[单片机]
如何使用Keil3开发51<font color='red'>单片机</font>程序
stc12c5a60s2单片机简单实现DHT11源程序
网络上有很多实现DHT11的程序,单大多都是89c52的。而有关stc12c5a60s2的很少。 本人是新手一枚,在写关于stc12串口接收dht11数据时,发现接收到的都是0。 这是为什么呢?在网上查了一堆资料后,明白是时序的原因。 stc12系列的处理速度比89c52的速度快,且我们写的延时函数所延时的时间与参数不成正比。需要示波器。 硬件:芯片:stc12c5a60s2 晶振:110592mhz 部分代码: main.c中: DHT11数据读取 串口发送 波特率9600 STC12C5A60S2 /**************************************************/ #incl
[单片机]
基于AVR单片机的简易灭火机器人设计
引言 近年来,随着石化等基础工业的飞速发展,在生产过程中的易燃易爆和剧毒化学制品的使用急剧增长,由于设备和管理方面的原因,导致化学危险品和放射性物质泄漏、燃烧爆炸的事故增多。消防机器人作为特种消防设备可代替消防队员接近火场实施有效的灭火救援、化学检验和火场侦察。它的应用将提高消防部队扑灭特大恶性火灾的实战能力,对减少国家财产损失和灭火救援人员的伤亡将产生重要的作用。 1 设计要求 制作一个由计算机程序控制的机器人,在一间模拟平面结构的房间里运动,找到一根燃烧的蜡烛并尽快将它扑灭。 灭火要求:机器人不能运用任何破坏性的或危险的方法来扑灭蜡烛火焰。它可以运用类似水、空气等物质,或者使用机械方式,但是禁止使用任何危险的或可能破坏灭
[单片机]
基于AVR<font color='red'>单片机</font>的简易灭火机器人设计
基于AT89C51单片机的十进制计算器系统设计
引言 本系统采用AT89C51 单片机作为控制器,用来实现实现四位数的“+”,“-”,“*”,“/”运算,运算结果通过数码管显示,并具有有清零功能。AT89C51 具有如下特点:40 个引脚,4k BytesFlash 片内程序存储器,128 bytes 的随机存取数据存储器( RAM ),32 个外部双向输入/ 输出(I/O)口,5 个中断优先级2层中断嵌套中断,2 个16 位可编程定时计数器,2 个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 1 总体设计方案 1.1 系统组成与工作原理 本系统以51 单片机为主控核心,与矩阵键盘、晶振、LED 显示管模块一起组合而成。
[单片机]
基于AT89C51<font color='red'>单片机</font>的十进制计算器系统设计
用51单片机控制的充电器电路
用单片机AT89C2051控制的充电器电路
[单片机]
用51<font color='red'>单片机</font>控制的充电器电路
AVR单片机IC卡程序
AVR单片机IC卡程序 #include io8535v.h #include macros.h #define uchar unsigned char #define uint unsigned int //**********定义全局变量*******************// //查表0 1 2 3 4 5 6 7 8 9 E F P OFF uchar table ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x79,0x71,0x73,0x00}; uchar I CC ode ;//定义IC卡复位时读出的4字节代码; uc
[单片机]
AVR<font color='red'>单片机</font>IC卡程序
用关中断和互斥量来保护多线程共享的全局变量
一、使用proteus绘制简单的电路图,用于后续仿真 二、编写程序 /******************************************************************************************************************** ---- @Project: Mutex ---- @File: main.c ---- @Edit: ZHQ ---- @Version: V1.0 ---- @CreationTime: 20200810 ---- @ModifiedTime: 20200810 ----
[单片机]
用关中断和互斥量来保护多线程共享的全局变量
程控多功能三相功率源的设计
   前言   程控三相交流功率源的应用十分广泛,它被大量应用于冶金、通信、化工、电力及军工等诸多行业。用于交流调压、调功、调光及电机软启动等工业自动化控制领域,还可以用于计量以及产品的性能试验等方面。用于计量和产品试验等领域的功率源对于其输出波形要求较高,要求功率源输出完整的正弦波信号,对于正弦波的失真度有一定的限制。目前此类交流功率源的实际输出功率都很小,它们一般只强调单项指标,即电流或电压输出。而用于电能表计量时,其功率源输出的不是真实的功率,而是利用产生“虚功率”的方法来实现电能的计量。在某些产品的性能试验或计量过程中需要产生实际的交流功率,且要求其任意相的电流、电压、相位都能够独立调节。目前的交流功率源都无法满足要求,
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved