1.初始化SPI,MCU各引脚。
当有数据接收或发送状态声明时,有中断和查询两种方式。GDO0与GDO2引脚输出至MCU引脚,若要用中断则要接至MCU外部中断引脚,查询时则可用GPIO。
2.复位CC1101。
3.初始化CC1101。(写操作时可从SO中读出CC1101状态)
初始化后CC1100为IDLE状态.
4.状态机转换,写/读FIFO数据。
每次写操作时SO返回的值为写操作前的CC1100状态值,具体值见Table20;读状态命令为当前CC1100状态值,具体值见寄存器0X35说明;注意两者区别。
快速认识Cc1100
Cc1100可以工作在同步模式下,代价是:MCU自己控制前导码。本系统中,Cc1100将工作在异步模式下。
知识点
Head Byte:在 引脚 Cc1100.Csn 有效后,通过SPI总线写入 Cc1100的第一个字节。
Status Byte: 在写入 HeadByte 的同时,MCU 得到 Status Byte。
Burst Bit:在 Head Byte 中的一个 Bit, 有效值=="1",无效值=="0"
GDO0:
GDO0可用作FIFO状态输出,载波感应(CS),时钟输出,GDO0 脚也能用作集成于芯片的模拟温度传感器(未用).配置寄存器为IOCFG0(0X02),现在配置为RX模式下数据状态反应输出.
GDO1:
GDO1与SPI的SO共用引脚,默认状态下为3态,当CSn为低电平时,此引脚SPI的SO功能生效。配置寄存器为IOCFG0(0X01),现在配置为空闲状态下3态,SPI模式下SO.
GDO2:
GDO2可用作FIFO状态输出,载波感应(CS),时钟输出,配置寄存器为IOCFG0(0X00),现在配置为载波感应(CS)输出.
TXOFF_MODE/RXOFF_MODE:
注意,此配置为在数据包被发送/接收后状态机状态决定位,仅是在发生发送或者接收后动作;当为IDLE时发SRX/STX后状态机不按此配置运行。TX/RX后要校准。
功率放大控制(PATABLE):
0X3E为功率写入地址,0X22为为功率配置寄存器。PATABLE 是一个8字节表,定义了8个PA 功率值。这个表从最低位(0)到最高位(7)可读和写,一次一位。一个索引计数器用来控制对这个表的访问。
每读出或写入表中的一个字节,计数器就加 1。当 CSn 为高时,计数值置为最小值。当达到最大值时,计数器由零重新开始计数。
FREND0.PA_POWER(2:0)从8个功率值中选择1个,且振幅为相应数等级。
异步模式:
在此模式下,CC1101中的MCU的若干支持机制会停用,包括数据包硬件处理,FIFO 缓冲,数据白化,交错(interleaver)和前向纠错(FEC) ,曼彻斯特编码(Manchester encoding);
MSK不支持异步模式;
PKTCTRL0.PKT_FORMAT == 3 使能异步模式,GDO0为input,GDO0, GDO1或GDO2为output 相应配置位为IOCFG0.GDO0_CFG, IOCFG1.GDO1_CFG IOCFG2.GDO2_CFG;
电磁波激活(WOR):
在WOR滤波使用之前RC振荡器必须启用,RC振荡器是 WOR 定时器的时钟源.在WOR下,收到信号后会自动进入RX模式.
载波感应(CS)与RSSI:
因此两配置相互有连系,所以一起论述.
RSSI 只能在RX模式下才能有效,作用为对当前信号质量评估,信号质量可从RSSI寄存器读出.RSSI信号强度可从0X34取出.
RSSI(信号强度)计算公式: 注:此为433M下,结果为负数,
RSSI_dBm=(RSSI-256)/2-74 (RSSI>=128)
RSSI_dBm= (RSSI/2)-74 (RSSI<128)
CS 只在RX模式下才能有效,当信号质量高于设定门限值时,CS状态将会被声明。现在配置为GDO2输出感应状态.
CS门限值由以下4个寄存器决定
?? AGCCTRL2.MAX_LNA_GAIN
?? AGCCTRL2.MAX_DVGA_GAIN
?? AGCCTRL1.CARRIER_SENSE_ABS_THR
?? AGCCTRL2.MAGN_TARGET
CS门限值计算公式: 表默认门限值 + (MAGN_TARGET-33) + CARRIER_SENSE_ABS_THR.
表默认门限值见table29,table30. 由AGCCTRL2.MAX_LNA_GAIN AGCCTRL2.MAX_DVGA_GAIN 决定.
默认门限值表只给了两个数据速率下的值,其余由自己测.我们对此要求不是太高,可以参考用这个表.
CARRIER_SENSE_ABS_THR为对应表中-7~7的值,最后单位为dBm.
Example:
在250K下AGCCTRL2.MAX_LNA_GAIN = 00 AGCCTRL2.MAX_DVGA_GAIN = 00 得出表中为-90.5
MAGN_TARGET = 7(42), CARRIER_SENSE_ABS_THR = 1(1)
门限为-90.5 + (42-33) + 1= -82.5dBm
清理信道访问(CCA):
清理信道访问用来指示当前信号是空闲还是忙。当忙时是否丢弃当前数据,寄存器MCSM1.CCA_MODE决定是否丢弃.默认配置为保留当前寄存器中数据,丢弃下一步要处理数据.
数据FIFO:
当TX操作时,由MCU控制,溢出时CC1101出错;当RX操作时,读空时CC1101出错
RX FIFO 和 TX FIFO 中的字节数也能分别从状态寄存器 RXBYTES.NUM_RXBYTES和TXBYTES.NUM_TXBYTES 中读出
4 位 FIFOTHR.FIFO_THR 设置用来控制FIFO 门限点
读单字节时,,CSn继续保持低;。突发访问方式允许一地址字节,然后是连续的数据字节,直到通过设置 CSn 为高来断访问
当写操作时,最后一个字节被传送至 SI 脚后, 被 SO脚接收的状态位会表明在 TX FIFO中只有一个字节是空闲,
寄存器分类
Configration Registers 共47个,可读,可写
0x00~0x2E
Status Registers 共14个,只读
0x30~0x3D
Command Strobe 共14个,只写
寻址空间:0x30~0x3D
14个地址,对相应的地址进行写,
就相当于激活了对应的命令
本系统是用到的Strobe:
CC1100_STROBE_RESET
CC1100_STROBE_ENTER_RX_MODE
CC1100_STROBE_ENTER_TX_MODE
CC1100_COMMAND_STROBE_SIDLE
CC1100_COMMAND_STROBE_SFRX
TX FIFO 共64个,只写
RX FIFO 共64个,只读
Status(Command)Registers操作:
当地址为0X30~0X3D时
burst为1:对Status Registers的操作
Status Registers只可读,且只能一次读一个字节,不可写
burst为0:对Command Registers操作
寄存器的访问和一个寄存器的操作一样,但没有数据被传输.写完毕后,CC1100便执行相应操作.
读写FIFO,有两种模式:单字节读写;Burst读写。
单字节读写时序:
1 Cc1100.Csn有效。
2 写入Head Byte。
3 读、写一个1字节。
4 Cc1100.Csn无效。
#include
#include
#define INT8U unsigned char
#define INT16U unsigned int
#define WRITE_BURST 0x40 //连续写入
#define READ_SINGLE 0x80 //读
#define READ_BURST 0xC0 //连续读
#define BYTES_IN_RXFIFO 0x7F //接收缓冲区的有效字节数
#define CRC_OK 0x80 //CRC校验通过位标志
//*******************************************************
sbit GDO0 =P1^3;
sbit GDO2 =P3^2;
sbit MISO =P1^6;
sbit MOSI =P1^5;
sbit SCK =P1^7;
sbit CSN =P1^2;
sbit LED2 =P3^4;
sbit LED1 =P3^5;
sbit KEY1 =P3^6;
sbit KEY2 =P3^7;
//*******************************************************
sbit led3=P2^3;
sbit led2=P2^2;
sbit led1=P2^1;
sbit led0=P2^0;
//**********************************************************
//INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};
INT8U PaTabel[8] = {0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0};//修改发射功率
//******************************************************
void SpiInit(void);
void CpuInit(void);
void RESET_CC1100(void);
void POWER_UP_RESET_CC1100(void);
void halSpiWriteReg(INT8U addr, INT8U value);
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);
void halSpiStrobe(INT8U strobe);
INT8U halSpiReadReg(INT8U addr);
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);
INT8U halSpiReadStatus(INT8U addr);
void halRfWriteRfSettings(void);
void halRfSendPacket(INT8U *txBuffer, INT8U size);
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);
//******************************************************
// CC1100 STROBE, CONTROL AND STATUS REGSITER
#define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration
#define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration
#define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration
#define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1 0x04 // Sync word, high INT8U
#define CCxxx0_SYNC0 0x05 // Sync word, low INT8U
#define CCxxx0_PKTLEN 0x06 // Packet length
#define CCxxx0_PKTCTRL1 0x07 // Packet automation control
#define CCxxx0_PKTCTRL0 0x08 // Packet automation control
#define CCxxx0_ADDR 0x09 // Device address
#define CCxxx0_CHANNR 0x0A // Channel number
#define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control
#define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control
#define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U
#define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U
#define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U
#define CCxxx0_MDMCFG4 0x10 // Modem configuration
#define CCxxx0_MDMCFG3 0x11 // Modem configuration
#define CCxxx0_MDMCFG2 0x12 // Modem configuration
#define CCxxx0_MDMCFG1 0x13 // Modem configuration
#define CCxxx0_MDMCFG0 0x14 // Modem configuration
#define CCxxx0_DEVIATN 0x15 // Modem deviation setting
#define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2 0x1B // AGC control
#define CCxxx0_AGCCTRL1 0x1C // AGC control
#define CCxxx0_AGCCTRL0 0x1D // AGC control
#define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout
#define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout
#define CCxxx0_WORCTRL 0x20 // Wake On Radio control
#define CCxxx0_FREND1 0x21 // Front end RX configuration
#define CCxxx0_FREND0 0x22 // Front end TX configuration
#define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration
#define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration
#define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration
#define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration
#define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration
#define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control
#define CCxxx0_PTEST 0x2A // Production test
#define CCxxx0_AGCTEST 0x2B // AGC test
#define CCxxx0_TEST2 0x2C // Various test settings
#define CCxxx0_TEST1 0x2D // Various test settings
#define CCxxx0_TEST0 0x2E // Various test settings
// Strobe commands
#define CCxxx0_SRES 0x30 // Reset chip.
#define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
// If in RX/TX: Go to a wait state where only the synthesizer is
// running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator.
#define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off
// (enables quick start).
#define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and
// MCSM0.FS_AUTOCAL=1.
#define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if
// MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
// Only go to TX if channel is clear.
#define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit
// Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer.
#define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST 0x3C // Reset real time clock.
#define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two
// INT8Us for simpler software.
#define CCxxx0_PARTNUM 0x30
#define CCxxx0_VERSION 0x31
#define CCxxx0_FREQEST 0x32
#define CCxxx0_LQI 0x33
#define CCxxx0_RSSI 0x34
#define CCxxx0_MARCSTATE 0x35
#define CCxxx0_WORTIME1 0x36
#define CCxxx0_WORTIME0 0x37
#define CCxxx0_PKTSTATUS 0x38
#define CCxxx0_VCO_VC_DAC 0x39
#define CCxxx0_TXBYTES 0x3A
#define CCxxx0_RXBYTES 0x3B
#define CCxxx0_PATABLE 0x3E
#define CCxxx0_TXFIFO 0x3F
#define CCxxx0_RXFIFO 0x3F
// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers
typedef struct S_RF_SETTINGS
{
INT8U FSCTRL2; //自已加的
INT8U FSCTRL1; // Frequency synthesizer control.
INT8U FSCTRL0; // Frequency synthesizer control.
INT8U FREQ2; // Frequency control word, high INT8U.
INT8U FREQ1; // Frequency control word, middle INT8U.
INT8U FREQ0; // Frequency control word, low INT8U.
INT8U MDMCFG4; // Modem configuration.
INT8U MDMCFG3; // Modem configuration.
INT8U MDMCFG2; // Modem configuration.
INT8U MDMCFG1; // Modem configuration.
INT8U MDMCFG0; // Modem configuration.
INT8U CHANNR; // Channel number.
INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled).
INT8U FREND1; // Front end RX configuration.
INT8U FREND0; // Front end RX configuration.
INT8U MCSM0; // Main Radio Control State Machine configuration.
INT8U FOCCFG; // Frequency Offset Compensation Configuration.
INT8U BSCFG; // Bit synchronization Configuration.
INT8U AGCCTRL2; // AGC control.
INT8U AGCCTRL1; // AGC control.
INT8U AGCCTRL0; // AGC control.
INT8U FSCAL3; // Frequency synthesizer calibration.
INT8U FSCAL2; // Frequency synthesizer calibration.
INT8U FSCAL1; // Frequency synthesizer calibration.
INT8U FSCAL0; // Frequency synthesizer calibration.
INT8U FSTEST; // Frequency synthesizer calibration control
INT8U TEST2; // Various test settings.
INT8U TEST1; // Various test settings.
INT8U TEST0; // Various test settings.
INT8U IOCFG2; // GDO2 output pin configuration
INT8U IOCFG0; // GDO0 output pin configuration
INT8U PKTCTRL1; // Packet automation control.
INT8U PKTCTRL0; // Packet automation control.
INT8U ADDR; // Device address.
INT8U PKTLEN; // Packet length.
} RF_SETTINGS;
/////////////////////////////////////////////////////////////////
const RF_SETTINGS rfSettings =
{
0x00,
0x08, // FSCTRL1 Frequency synthesizer control.
0x00, // FSCTRL0 Frequency synthesizer control.
0x10, // FREQ2 Frequency control word, high byte.
0xA7, // FREQ1 Frequency control word, middle byte.
0x62, // FREQ0 Frequency control word, low byte.
0x5B, // MDMCFG4 Modem configuration.
//0xf6, // MDMCFG4 chang by allen
0xF8, // MDMCFG3 Modem configuration.
//0x83, // MDMCFG3 chang by allen data rate = 2.398K
0x03, // MDMCFG2 Modem configuration.
0x22, // MDMCFG1 Modem configuration.
0xF8, // MDMCFG0 Modem configuration.
0x00, // CHANNR Channel number.
0x47, // DEVIATN Modem deviation setting (when FSK modulation is enabled).
0xB6, // FREND1 Front end RX configuration.
0x10, // FREND0 Front end RX configuration.
0x18, // MCSM0 Main Radio Control State Machine configuration.
0x1D, // FOCCFG Frequency Offset Compensation Configuration.
0x1C, // BSCFG Bit synchronization Configuration.
0xC7, // AGCCTRL2 AGC control.
0x00, // AGCCTRL1 AGC control.
0xB2, // AGCCTRL0 AGC control.
0xEA, // FSCAL3 Frequency synthesizer calibration.
0x2A, // FSCAL2 Frequency synthesizer calibration.
0x00, // FSCAL1 Frequency synthesizer calibration.
0x11, // FSCAL0 Frequency synthesizer calibration.
0x59, // FSTEST Frequency synthesizer calibration.
0x81, // TEST2 Various test settings.
0x35, // TEST1 Various test settings.
0x09, // TEST0 Various test settings.
0x0B, // IOCFG2 GDO2 output pin configuration.
0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.
0x04, // PKTCTRL1 Packet automation control.
//0x05, // PKTCTRL0 Packet automation control.
0x01, //PKTCTRL0 crc disable chang by allen at 09.12.24
0x00, // ADDR Device address.
0x0c // PKTLEN Packet length.
}
//********************************************************
//函数名:delay(unsigned int s)
//输入:时间
//输出:无
//功能描述:普通廷时,内部用
//***********************************************************
static void delay(unsigned int s)
{
unsigned int i;
for(i=0; i for(i=0; i}
void halWait(INT16U timeout) {
do {
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
} while (--timeout);
}
void SpiInit(void)
{
CSN=0;
SCK=0;
CSN=1;
}
/**********************************************
//函数名:CpuInit()
//输入:无
//输出:无
//功能描述:SPI初始化程
/****************************************************/
void CpuInit(void)
{
SpiInit();
delay(5000);
}
//*****************************************************
//函数名:SpisendByte(INT8U dat)
//输入:发送的数据
//输出:无
//功能描述:SPI发送一个字
//******************************************************
INT8U SpiTxRxByte(INT8U dat)
{
INT8U i,temp;
temp = 0;
SCK = 0;
for(i=0; i<8; i++)
{
if(dat & 0x80)
{
MOSI = 1;
}
else MOSI = 0;
dat <<= 1;
SCK = 1;
_nop_();
_nop_();
temp <<= 1;
if(MISO)temp++;
SCK = 0;
_nop_();
_nop_();
}
return temp;
//********************************************************
//函数名:void RESET_CC1100(void)
//输入:无
//输出:无
//功能描述:复位CC1100
//*******************************************************
void RESET_CC1100(void)
{
CSN = 0;
while (MISO);
SpiTxRxByte(CCxxx0_SRES); //写入复位命令
while (MISO);
CSN = 1;
}
//********************************************************
//函数名:void POWER_UP_RESET_CC1100(void)
//输入:无
//输出:无
//功能描述:上电复位CC1100
//*****************************************************
void POWER_UP_RESET_CC1100(void)
{
CSN = 1;
halWait(1);
CSN = 0;
halWait(1);
CSN = 1;
halWait(41);
RESET_CC1100(); //复位CC1100
}
//******************************************************
//函数名:void halSpiWriteReg(INT8U addr, INT8U value)
//输入:地址和配置字
//输出:无
//功能描述:SPI写寄存器
//***************************************************
void halSpiWriteReg(INT8U addr, INT8U value)
{
CSN = 0;
while (MISO);
SpiTxRxByte(addr); //写地址
SpiTxRxByte(value); //写入配置
CSN = 1;
}
//*******************************************************
//函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,写入缓冲区,写入个数
//输出:无
//功能描述:SPI连续写配置寄存器
//*****************************************************
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i, temp;
temp = addr | WRITE_BURST;
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
SpiTxRxByte(buffer[i]);
}
CSN = 1;
}
//*******************************************************
//函数名:void halSpiStrobe(INT8U strobe)
//输入:命令
//输出:无
//功能描述:SPI写命令
//********************************************************
void halSpiStrobe(INT8U strobe)
{
CSN = 0;
while (MISO);
SpiTxRxByte(strobe); //写入命令
CSN = 1;
}
//*******************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该寄存器的配置字
//功能描述:SPI读寄存器
//*******************************************************
INT8U halSpiReadReg(INT8U addr)
{
INT8U temp, value;
temp = addr|READ_SINGLE;//读寄存器命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//******************************************************
//函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,读出数据后暂存的缓冲区,读出配置个数
//输出:无
//功能描述:SPI连续写配置寄存器
//********************************************************
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i,temp;
temp = addr | READ_BURST; //写入要读的配置寄存器地址和读命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
buffer[i] = SpiTxRxByte(0);
}
CSN = 1;
}
//*******************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该状态寄存器当前值
//功能描述:SPI读状态寄存器
//*****************************************************
INT8U halSpiReadStatus(INT8U addr)
{
INT8U value,temp;
temp = addr | READ_BURST; //写入要读的状态寄存器的地址同时写入读命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//*********************************************************
//函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)
//输入:无
//输出:无
//功能描述:配置CC1100的寄存器
//********************************************************
void halRfWriteRfSettings(void)
{
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2);//自已加的
// Write register settings
halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1);
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0);
halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2);
halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1);
halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0);
halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4);
halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3);
halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2);
halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1);
halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0);
halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR);
halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN);
halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1);
halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0);
halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 );
halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG);
halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG);
halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);
halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);
halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);
halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3);
halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2);
halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1);
halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0);
halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST);
halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2);
halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1);
halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0);
halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2);
halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0);
halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);
halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);
halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR);
halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN);
}
//*********************************************************
//函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size)
//输入:发送的缓冲区,发送数据个数
//输出:无
//功能描述:CC1100发送一组数据
//********************************************************
void halRfSendPacket(INT8U *txBuffer, INT8U size)
{
halSpiWriteReg(CCxxx0_TXFIFO, size);
halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size); //写入要发送的数据
halSpiStrobe(CCxxx0_STX); //进入发送模式发送数据
// Wait for GDO0 to be set -> sync transmitted
while (!GDO0);
// Wait for GDO0 to be cleared -> end of packet
while (GDO0);
halSpiStrobe(CCxxx0_SFTX);
delay(20);
}
void setRxMode(void)
{
halSpiStrobe(CCxxx0_SRX); //进入接收状态
}
/*
// Bit masks corresponding to STATE[2:0] in the status byte returned on MISO
#define CCxx00_STATE_BM 0x70
#define CCxx00_FIFO_BYTES_AVAILABLE_BM 0x0F
#define CCxx00_STATE_TX_BM 0x20
#define CCxx00_STATE_TX_UNDERFLOW_BM 0x70
#define CCxx00_STATE_RX_BM 0x10
#define CCxx00_STATE_RX_OVERFLOW_BM 0x60
#define CCxx00_STATE_IDLE_BM 0x00
static INT8U RfGetRxStatus(void)
{
INT8U temp, spiRxStatus1,spiRxStatus2;
INT8U i=4;// 循环测试次数
temp = CCxxx0_SNOP|READ_SINGLE;//读寄存器命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
spiRxStatus1 = SpiTxRxByte(0);
do
{
SpiTxRxByte(temp);
spiRxStatus2 = SpiTxRxByte(0);
if(spiRxStatus1 == spiRxStatus2)
{
if( (spiRxStatus1 & CCxx00_STATE_BM) == CCxx00_STATE_RX_OVERFLOW_BM)
{
halSpiStrobe(CCxxx0_SFRX);
return 0;
}
return 1;
}
spiRxStatus1=spiRxStatus2;
}
while(i--);
CSN = 1;
return 0;
}
*/
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
{
INT8U status[2];
INT8U packetLength;
INT8U i=(*length)*4; // 具体多少要根据datarate和length来决定
halSpiStrobe(CCxxx0_SRX); //进入接收状态
//delay(5);
//while (!GDO1);
//while (GDO1);
delay(2);
while (GDO0)
{
delay(2);
--i;
if(i<1)
return 0;
}
if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0
{
//LED2 = 0;
packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度
//if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度
if(packetLength == 0x08)
{
//halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据
halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, 8); //读出所有接收到的数据
*length = packetLength; //把接收数据长度的修改为当前数据的长度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
//halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位
halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
// delay(2);
// halSpiStrobe(CCxxx0_SRX); //进入接收状态
// delay(20);
//delay(200);
return 1;
//return (status[1] & CRC_OK); //如果校验成功返回接收成功
}
else
{
*length = packetLength;
halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
// delay(2);
// halSpiStrobe(CCxxx0_SRX); //进入接收状态
// delay(20);
// LED2 = 1;
return 0;
}
}
return 0;
}
void main(void)
{
unsigned char key1_flag = 0;
bit key2_flag = 0;
unsigned int key1_scan_cnt = 400;
unsigned int key2_scan_cnt = 300;
INT8U i = 0;
INT8U leng =0;
INT8U tf =0;
INT8U TxBuf[8]={1,2,3,4,5,6,7,8}; // 8字节, 如果需要更长的数据包,请正确设置
INT8U RxBuf[8]={0};
CpuInit();
POWER_UP_RESET_CC1100();
halRfWriteRfSettings();
halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);
//halSpiStrobe(CCxxx0_SRX); //进入接收状态
//setRxMode();
while(1)
{
//setRxMode();
delay(10);
if(KEY1 == 0)
{
key1_scan_cnt--;
if(!key1_scan_cnt)
{
key1_scan_cnt = 300;
if(key1_flag == 0)//判断按键是否第1次按下
{
key1_flag = 1;//按键第1次按下标志位
}
}
}
else
{
key1_scan_cnt = 300;
if(key1_flag == 1)//判断是否第一次按键动作松开
{
led1 = 0;
led0 = 0;
key1_flag = 2;
key1_scan_cnt = 3;
TxBuf[0] = 0x77;//第1个字节为0x77的数据帧,接收方收到后不需要返回应答
while(1)
{
halRfSendPacket(TxBuf,8); // Transmit Tx buffer data
delay(100);
if(KEY1 == 0)//检测按键是否第2次按下
{
key1_scan_cnt--;
if(!key1_scan_cnt)
{
key1_flag = 3;//按键第2次按下
key1_scan_cnt = 300;
led1 = 1;
led0 = 1;
break;//当按键再次按下时退出长发状态
}
}
else//没有第2次的按键动作
{
key1_scan_cnt = 3;
}
}
}
else if(key1_flag == 3)//是否为第2次的按键动作松开
{
key1_flag = 0;
}
}
if(KEY2 == 0)
{
key2_scan_cnt--;
if(!key2_scan_cnt)//确认按键正常按下
{
key2_scan_cnt = 300;
key2_flag = 1;//按键第1次按下标志位
}
}
else
{
key2_scan_cnt = 300;
if(key2_flag)//按键弹起
{
LED1 = 0;
key2_flag = 0;
delay(1000);
TxBuf[0] = 0x88;
halRfSendPacket(TxBuf,8);// Transmit Tx buffer data
LED1 = 1;
}
}
leng =8; // 预计接受8 bytes
if(halRfReceivePacket(RxBuf,&leng))
// if(!GDO0)
{
// leng =8; // 预计接受8 bytes
// if(halRfReceivePacket(RxBuf,&leng))
{
if(RxBuf[0] == 0x77)//接收到的数据不需要返回应答
{
LED2 = ~LED2;
}
else if(RxBuf[0] == 0x88)//判断接收到的数据是否需要返回应答
{
LED2 = 0;//接收数据正确,开接收指示灯
LED1 = 0;//准备发送应答,开发送指示灯
delay(1000);
TxBuf[0] = 0x99;
halRfSendPacket(TxBuf,8); // Transmit Tx buffer data 返回应答
LED2 = 1;
LED1 = 1;
}
else if(RxBuf[0] == 0x99)//应答数据
{
LED2 = 0;
delay(1000);
LED2 = 1;
}
}
}
}
}
上一篇:条形码编码之Code128、EAN128
下一篇:一个故事看懂单片机中的堆栈
推荐阅读最新更新时间:2024-03-16 13:47