该分析材料大部分来自opendev论坛,我所做的只不过是加上一些自己的分析和整理,由于个人能力有限,纰漏之处在所难免,欢迎指正。
一、硬件上的连接问题
如果使用内部RC振荡器而不使用外部晶振,请按照如下方法处理:
1)对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
2)对于少于100脚的产品,有2种接法:
i)OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能。
ii)分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面i)节省2个外部电阻。
对上图的分析如下:
重要的时钟:
PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2 之间的关系要弄清楚;
1、HSI:高速内部时钟信号 stm32单片机内带的时钟 (8M频率) 精度较差
2、HSE:高速外部时钟信号 精度高来源(1)HSE外部晶体/陶瓷谐振器(晶振) (2)HSE用户外部时钟
3、LSE:低速外部晶体 32.768kHz主要提供一个精确的时钟源一般作为RTC时钟使用
在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz。
②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③、LSI是低速内部时钟,RC振荡器,频率为40kHz。
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。
系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:
①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。
②、通过8分频后送给Cortex的系统定时器时钟。
③、直接送给Cortex的空闲运行时钟FCLK。
④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。
⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。
需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。
涉及的寄存器:
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x_map.h”中定义如下:
typedef struct
{
vu32 CR; //HSI,HSE,CSS,PLL等的使能
vu32 CFGR; //PLL等的时钟源选择以及分频系数设定
vu32 CIR; // 清除/使能时钟就绪中断
vu32 APB2RSTR; //APB2线上外设复位寄存器
vu32 APB1RSTR; //APB1线上外设复位寄存器
vu32 AHBENR; //DMA,SDIO等时钟使能
vu32 APB2ENR; //APB2线上外设时钟使能
vu32 APB1ENR; //APB1线上外设时钟使能
vu32 BDCR; //备份域控制寄存器
vu32 CSR;
} RCC_TypeDef;
这些寄存器的具体定义和使用方式参见芯片手册,因为C语言的开发可以不和他们直接打交道,当然如果能够加以理解和记忆,无疑是百利而无一害。
如果外接晶振为8Mhz,最高工作频率为72Mhz,显然需要用PLL倍频9倍,这些设置都需要在初始化阶段完成。为了方便说明,以例程的RCC设置函数,并用中文注释的形式加以说明:
static void RCC_Config(void)
{
RCC_DeInit();
RCC_HSEConfig(RCC_HSE_ON);
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if (HSEStartUpStatus == SUCCESS)
{
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
FLASH_SetLatency(FLASH_Latency_2);
RCC_HCLKConfig(RCC_SYSCLK_Div1);
RCC_PCLK2Config(RCC_HCLK_Div1);
RCC_PCLK1Config(RCC_HCLK_Div2);
RCC_ADCCLKConfig(RCC_PCLK2_Div6);
//上面这句例程中缺失了,但却很关键
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
RCC_PLLCmd(ENABLE);
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{}
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
while (RCC_GetSYSCLKSource() != 0x08)
{}
}
//使能外围接口总线时钟,注意各外设的隶属情况,不同芯片的分配不同,到时候查手册就可以
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG |
RCC_APB2Periph_AFIO, ENABLE);
}
由上述程序可以看出系统时钟的设定是比较复杂的,外设越多,需要考虑的因素就越多。同时这种设定也是有规律可循的,设定参数也是有顺序规范的,这是应用中应当注意的,例如PLL的设定需要在使能之前,一旦PLL使能后参数不可更改。
经过此番设置后,对于外置8Mhz晶振的情况下,系统时钟为72Mhz,高速总线和低速总线2都为72Mhz,低速总线1为36Mhz,ADC时钟为12Mhz,USB时钟经过1.5分频设置就可以实现48Mhz的数据传输。
一般性的时钟设置需要先考虑系统时钟的来源,是内部RC还是外部晶振还是外部的振荡器,是否需要PLL。然后考虑内部总线和外部总线,最后考虑外设的时钟信号。遵从先倍频作为CPU时钟,然后在由内向外分频,下级迁就上级的原则。
时钟控制寄存器(RCC_CR)
31~26 | 25 | 24 | 23~20 | 19 | 18 | 17 | 16 |
保留 | PLLRDY | PLLON | 保留 | CSSON | HSEBYP | HSERDY | HSEON |
eg:RCC->CR|=0x00010000; //外部高速时钟使能HSEON
RCC->CR|=0x01000000; //使能PLLON
RCC->CR>>25; //等待PLL锁定
时钟配置寄存器(RCC_CFGR)
31:27 | 26:24 | 23 | 22 | 21:18 | 17 | 16 | |||||
保留 | MCO[2:0] | 保留 | USBPRE | PLLMUL[3:0] | PLLXTPRE | PLLSRC | |||||
15:14 | 13:11 | 10:8 | 7:4 | 3:2 | 1:0 | ||||||
ADCPRE[1:0] | PPRE2[2:0] | PPRE1[2:0] | HPRE[3:0] | SWS[1:0] | SW[1:0] |
位26:24 | MCO: 微控制器时钟输出 (Microcontroller clock output) 由软件置’1’或清零。 0xx:没有时钟输出; 100:系统时钟(SYSCLK)输出; 101:内部RC振荡器时钟(HSI)输出; 110:外部振荡器时钟(HSE)输出; 111:PLL时钟2分频后输出。 |
位22 | USBPRE:USB预分频 (USB prescaler) 由软件置’1’或清’0’来产生48MHz的USB时钟。在RCC_APB1ENR寄存器中使能USB时钟之前,必须保证该位已经有效。如果USB时钟被使能,该位不能被清零。 0:PLL时钟1.5倍分频作为USB时钟 1:PLL时钟直接作为USB时钟 |
位21:18 | PLLMUL:PLL倍频系数 (PLL multiplication factor) 由软件设置来确定PLL倍频系数。只有在PLL关闭的情况下才可被写入。 注意:PLL的输出频率不能超过72MHz 0000:PLL 2倍频输出 1000:PLL 10倍频输出 0001:PLL 3倍频输出 1001:PLL 11倍频输出 0010:PLL 4倍频输出 1010:PLL 12倍频输出 0011:PLL 5倍频输出 1011:PLL 13倍频输出 0100:PLL 6倍频输出 1100:PLL 14倍频输出 0101:PLL 7倍频输出 1101:PLL 15倍频输出 0110:PLL 8倍频输出 1110:PLL 16倍频输出 0111:PLL 9倍频输出 1111:PLL 16倍频输出 |
位17 | PLLXTPRE:HSE分频器作为PLL输入 (HSE divider for PLL entry) 由软件置’1’或清’0’来分频HSE后作为PLL输入时钟。只能在关闭PLL时才能写入此位。 0:HSE不分频 1:HSE 2分频 |
位16 | PLLSRC:PLL输入时钟源 (PLL entry clock source) 由软件置’1’或清’0’来选择PLL输入时钟源。只能在关闭PLL时才能写入此位。 0:HSI振荡器时钟经2分频后作为PLL输入时钟 1:HSE时钟作为PLL输入时钟。 |
位15:14 | ADCPRE[1:0]:ADC预分频 (ADC prescaler) 由软件置’1’或清’0’来确定ADC时钟频率 00:PCLK2 2分频后作为ADC时钟 01:PCLK2 4分频后作为ADC时钟 10:PCLK2 6分频后作为ADC时钟 11:PCLK2 8分频后作为ADC时钟 |
位13:11 | PPRE2[2:0]:高速APB预分频(APB2) (APB high-speed prescaler (APB2)) 由软件置’1’或清’0’来控制高速APB2时钟(PCLK2)的预分频系数。 0xx:HCLK不分频 100:HCLK 2分频 101:HCLK 4分频 110:HCLK 8分频 111:HCLK 16分频 |
位10:8 | PPRE1[2:0]:低速APB预分频(APB1) (APB low-speed prescaler (APB1)) 由软件置’1’或清’0’来控制低速APB1时钟(PCLK1)的预分频系数。 警告:软件必须保证APB1时钟频率不超过36MHz。 0xx:HCLK不分频 100:HCLK 2分频 101:HCLK 4分频 110:HCLK 8分频 111:HCLK 16分频 |
位7:4 | HPRE[3:0]: AHB预分频 (AHB Prescaler) 由软件置’1’或清’0’来控制AHB时钟的预分频系数。 0xxx:SYSCLK不分频 1000:SYSCLK 2分频 1100:SYSCLK 64分频 1001:SYSCLK 4分频 1101:SYSCLK 128分频 1010:SYSCLK 8分频 1110:SYSCLK 256分频 1011:SYSCLK 16分频 1111:SYSCLK 512分频 |
位3:2 | SWS[1:0]:系统时钟切换状态 (System clock switch status) 由硬件置’1’或清’0’来指示哪一个时钟源被作为系统时钟。 00:HSI作为系统时钟; 01:HSE作为系统时钟; 10:PLL输出作为系统时钟; 11:不可用。 |
位1:0 | SW[1:0]:系统时钟切换 (System clock switch) 由软件置’1’或清’0’来选择系统时钟源。 00:HSI作为系统时钟; 01:HSE作为系统时钟; 10:PLL输出作为系统时钟; 11:不可用 |
eg: RCC->CFGR=0x00000400; //APB1=DIV2;APB2=DIV1(不分频);AHB=DIV1(不分频);
根据STM32库函数设置时钟流程:
RCC_DeInit(); //设置RCC寄存器重新设置为默认值
RCC_HSEConfig(RCC_HSE_ON); //打开外部高速时钟晶振
HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待外部高速时钟晶振工作
if(HSEStartUpStatus == SUCCESS) //外部就绪
{
//Add here PLL ans system clock config
RCC_HCLKConfig(RCC_SYSCLK_Div1); //设置AHB时钟不分频
RCC_PCLK2Config(RCC_HCLK_Div1); //设置APB2时钟不分频
RCC_PCLK1Config(RCC_HCLK_Div2); //设置APB1时钟二分频
RCC_ADCCLKConfig(RCC_PCLK2_Div6); //设置ADC时钟六分频
//设置PLL时钟将8M时钟9倍频到72M
RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);
RCC_PLLCmd(ENABLE); //使能PLL
FlagStatus Status;
Status = RCC_GetFlagStatus(RCC_FLAG_PLLRDY);
if(Status == RESET)
{
……
}
RCC_SYSCLKConfig(RCC-SYSCLKSource_PLLCLK); //将PLL输出设置为系统时钟
while(RCC_GetSYSCLKSource()!=0x08) //测试PLL是否被用作系统时钟等待校验完成
{}
}
else
{
//Add here some code to deal with this error
上一篇:STM32CubeMX时钟配置详解
下一篇:用STM32F4的库函数RCC_PLLConfig()代替SystemInit()手动初始化
推荐阅读最新更新时间:2024-11-18 14:20
设计资源 培训 开发板 精华推荐
- LT3091IFE 并联线性稳压器的典型应用
- STCS05 0.5 A 最大恒流 LED 驱动器的典型应用
- STC89C52RC贴片转直插
- EVAL-ADuC7061MKZ,基于 ADuC7061 ARM7TDMI MCU 的开发系统,用于高性能、多通道 24 位 Sigma-Delta ADC
- LM324DR2G 维恩桥振荡器运算放大器的典型应用
- TWR-MCF51JG-KIT,用于 MCF51JG256 32 位 ColdFire+ MCU 模块的开发塔式系统模块,具有 256KB 闪存和 64KB SRAM 存储器
- 【航顺训练营】卫星授时时钟
- 兼容多版本测试夹、探针夹、烧录夹、下载夹
- SGL8022台灯
- LPRP 低功耗参考平台具有板级电源管理框架 (PMF),适用于电池供电的 Nios II/SOPC Builder 设计