ATmega88 内核介绍

发布者:采菊东篱下最新更新时间:2021-12-08 来源: eefocus关键字:ATmega88  内核介绍  存储器 手机看文章 扫描二维码
随时随地手机看文章

本节从总体上讨论ATmega88 AVR 内核的结构。CPU 的主要任务是保证程序的正确执行。因此它必须能够访问存储器、执行运算、控制外设以及处理中断。


结构综述Figure 3. AVR 结构的方框图
为了获得最高的性能以及并行性, AVR 采用了Harvard 结构,具有独立的数据和程序总线程序存储器里的指令通过一级流水线运行。CPU 在执行一条指令的同时读取下一条指令( 在本文称为预取)。这个概念实现了指令的单时钟周期运行。程序存储器是可以在线编程的FLASH。 

快速访问寄存器文件包括32 个8 位通用工作寄存器,访问时间为一个时钟周期。从而实现了单时钟周期的ALU 操作。在典型的ALU 操作中,两个位于寄存器文件中的操作数同时被访问,然后执行运算,结果再被送回到寄存器文件。整个过程仅需一个时钟周期。

寄存器文件里有6 个寄存器可以用作3 个 16位的间接寻址寄存器指针以寻址数据空间,实现高效的地址运算。其中一个指针还可以作为程序存储器查询表的地址指针。这些附加的功能寄存器即为16 位的X、Y、Z 寄存器。

ALU支持寄存器之间以及寄存器和常数之间的算术和逻辑运算。ALU也可以执行单寄存器操作。运算完成之后状态寄存器的内容得到更新以反映操作结果。

程序流程通过有/ 无条件的跳转指令和调用指令来控制,从而直接寻址整个地址空间。大多数指令长度为16 位,亦即每个程序存储器地址都包含一条16 位或32 位的指令。

程序存储器空间分为两个区:引导程序区(Boot 区) 和应用程序区。这两个区都有专门的锁定位以实现读和读/ 写保护。用于写应用程序区的SPM 指令必须位于引导程序区。

在中断和调用子程序时返回地址的程序计数器(PC) 保存于堆栈之中。堆栈位于通用数据SRAM,因此其深度仅受限于SRAM 的大小。在复位例程里用户首先要初始化堆栈指针SP。这个指针位于I/O 空间,可以进行读写访问。数据SRAM 可以通过5 种不同的寻址模
式进行访问。

AVR 存储器空间为线性的平面结构。

AVR具有一个灵活的中断模块。控制寄存器位于I/O空间。状态寄存器里有全局中断使能位。每个中断在中断向量表里都有独立的中断向量。各个中断的优先级与其在中断向量表的位置有关,中断向量地址越低,优先级越高。

I/O I/O 存储器 64 个可以直接寻址的地址,作为 CPU 外设的控制寄存器、SPI,以及其他 I/O 功能。映射到数据 0x20 - 0x5F。此外,ATmega88 还有位于SRAM地址0x60 - 0xFF的扩展I/O空间,这些地址只能使用ST/STS/STD 和 LD/LDS/LDD 指令来访问。

关键字:ATmega88  内核介绍  存储器 引用地址:ATmega88 内核介绍

上一篇:ATmega88 ALU
下一篇:ATmega88 引脚功能

推荐阅读最新更新时间:2024-11-17 10:22

iSuppli降低半导体市场收入预测,存储器市场发展减缓是祸首?
市场研究机构iSuppli公司指出,全球半导体市场销售收入将在2007年达到2814亿美元,比去年的2602亿美元增长8.1%,但低于该公司之前预测的10.6%。 iSuppli公司将之归结于各种因素,包括手机销量增长速度的减缓、长期存在的库存过多问题以及存储器市场的大幅度减速。iSuppli公司首席分析师Gary Grandbois表示,最大的原因在于DRAM市场销售额没有达到之前预计的水平。2006年DRAM市场达到了顶峰,销售收入较2005年增长了35.2%,达到了3390万美元。 他认为,如此意外的强势增长之后,将是一次大减速,预计2007年该市场销售收入将仅增长8.6%,达到3690万美元。Grandbois指出,之
[焦点新闻]
ATmega128 内核介绍
本节从总体上讨论AVR 内核的结构。CPU 的主要任务是保证程序的正确执行。因此它必 须能够访问存储器,执行运算,控制外设以及处理中断。 为了得到最大程度的性能以及并行性, AVR 采用了Harvard 结构,具有独立的数据和程 序总线。程序存储器的指令通过一级流水线运行。CPU 在执行一条指令的同时读取下一 条指令( 在本文称为预取)。这个概念实现了指令的单时钟周期运行。程序存储器为可以 在线编程的FLASH。 快速访问寄存器文件包括32个8位通用工作寄存器,而且都可以在一个时钟周期内访问。 从而实现单时钟周期的ALU 操作。在典型的ALU 操作过程中,两个位于寄存器文件中的 操作数同时被访问,然后执行相应的运算,结果
[单片机]
ATmega128 <font color='red'>内核</font><font color='red'>介绍</font>
一种Windows2000下连续输出数据的PCI卡
  在视频 输出 、声呐仿真等实际应用中,经常要求计算机能根据要求稳定输出连续 数据 流。然而,当计算机工作于Windows2000操作系统下时,由于该操作系统是一个多任务的非实时操作系统,当它收到外部设备发来的中断时,需要延迟一定时间间隔后,才开始执行中断服务程序。这样,从计算机I/O口直接输出的数据流只能是间歇的数据流,无法提供连续数据流,不能满足实际应用的需要。      幸运的是,许多实际应用只需要低速的连续数据流。可以利用 PCI 总线的高速数据传输特性,在PCI接口后加入一个大容量FIFO存储器,高速的PCI数据流从FIFO存储器的输入端输入,在FIFO的输出端就能获得低速的连续数据流。这样屏蔽了Windows2000
[应用]
深入分析存储器的位宽及与C的关系
一、硬件参数 1、CPU:s3c44b0x 字长32位;以字节为单位编址;数据处理支持三种数据类型:字节(8位)、半字(16位)、字(32位);存储方式有大小端之分;25根地址线。 2、存储器 Ⅰ Flash ROM: SST39VF1601 数据位宽为16位(16根数据线);20根地址线;2M(1M*16bit)。 Ⅱ SDRAM: HY57V641620HG 数据位宽为16位(16根数据线);12根地址线(行地址选择线有12根,列地址选择线有8根(12根的低8根)),2根bank选择线,总共有22根有效地址线;8M(4bank*1M*16bit)。 3、 CPU编址:以字节(8bit)为单位 存储器编址:以
[单片机]
优化DSP应用的技术
   介绍   数字信号处理 (DSP) 是处理信号和数据的专用方法,其目的在于加强并修改这些信号。数字信号处理也用于分析信号以确定特定的信息内容。DSP主要用于处理真实世界的信号。这些信号可由数字序列进行转化和表示。我们后来使用数学方法处理信号,从信号中提取特定信息或以某种方式转化信号。   DSP在实时嵌入式系统中非常普遍,在这种系统中,计算的及时性与准确性同样重要。DSP 在这些环境中非常普遍,因为其根据设计,能够非常迅速地执行常见的信号处理操作。DSP 的可编程性允许应用随着时间的推移而不断变化发展,从而为应用供应商提供了众多优势。进行 DSP 编程需要熟悉应用、DSP 硬件架构以及用于编写高效实时软件、并能满足系统
[应用]
拍字节铁电随机存储器PB85RS128C替代FM25V01-G用于汽车尾门控制器
在诸多工业、汽车等对产品可靠性有高要求的应用场景中,如BMS,会使用存储器来储存系统中的重要信息,这得益于存储器本身的特性,数据保存期限久、耐久性出色、擦写次数高。FRAM在众多存储产品中脱颖而出,越是对使用有限制、有要求的场景,就越会使用FRAM来存储系统中的重要信息,在一汽车尾门控制器中,就有使用拍字节的PB85RS128C,本文将详细介绍相关参数及应用。 PB85RS128C是一种标准的FRAM(铁电随机存取存储器),使用SPI接口进行通讯,工作电压宽为2.7-3.6V,提供低功耗和低待机电流,待机电流最大值为10μA,提供8引脚SOP封装,工作频率为25MHz,工作电流最大5mA,内存为128Kb,最高100万次擦写循
[嵌入式]
拍字节铁电随机<font color='red'>存储器</font>PB85RS128C替代FM25V01-G用于汽车尾门控制器
ATmega32 Flash程序存储器
系统内可编程的Flash 程序存储器 ATmega32具有32K字节的在线编程Flash,用于存放程序指令代码。因为所有的AVR指令为16 位或32 位,故而Flash 组织成16K x 16 位的形式。用户程序的安全性要根据Flash程序存储器的两个区:引导(Boot) 程序区和应用程序区,分开来考虑。 Flash存储器至少可以擦写10,000次。ATmega32的程序计数器(PC)为14 位,因此可以寻 址 16K 字的程序存储器 P228 “支持 引导装入程序 – 在写的同时可以读(RWW, Read-While-Write)的自我编程能力” ,而P240 “ 存储器编程 ” 详述了用 SPI 或 JTAG 接口实现对 Fl
[单片机]
ATmega32 Flash程序<font color='red'>存储器</font>
TPMS外置编码存储器式轮胎定位技术的电路实现
TPMS技术及轮胎定位原理   汽车轮胎压力监测系统(TPMS)主要用于在汽车行驶时,适时地对轮胎气压进行自动监测,对轮胎漏气造成低胎压和高温高胎压爆胎进行预警,确保行车安全。   TPMS中的轮胎定位是指系统接受轮胎发射模块发出的信号,并识别、判定出是哪个轮胎的过程。 轮胎重新定位问题的提出   汽车因为前后左右车轮负荷不均、前轮负责转向和前后轴悬挂角度不同等原因,通常各轮胎磨损程度和位置也不同。为了延长轮胎的使用寿命,达到四个轮胎同步均匀磨损的效果,这就需要定期进行轮胎换位。   在轮胎换位的过程中,相应的发射检测模块也会换位。这就导致了原先存储在接收显示模块MCU中的ID码与轮胎对应识别关系信息不再适用于换胎后的轮胎
[汽车电子]
TPMS外置编码<font color='red'>存储器</font>式轮胎定位技术的电路实现
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved