高精度TDC-GP2在超声波流量计量中的应用

最新更新时间:2010-06-18来源: 世强电讯关键字:时间数字转换器  超声波流量计  热量表  时间测量  低功耗 手机看文章 扫描二维码
随时随地手机看文章

  前言

  相对于使用传统测量方法的流量计,超声波流量计有着诸多的优点:它不会改变流体的流动状态,不对流体产生附加阻力;它可适应多种管径的流体测量,不会因管径的不同增加仪表成本;它的换能器可设计成夹装式,可作移动性测量。TDC-GP2作为高精度的时间测量芯片,不但集成了时间测量功能,还针对超声波流量计和热量表的应用提供超声波换能器驱动脉冲以及温度测量功能。相对于使用分立元件或者FPGA的超声波流量计方案,使用TDC-GP2的方案大大简化了硬件电路设计,显著降低了整机功耗,成为电路最简洁、功耗最低的超声波流量计方案。

  超声波流量计的测量原理

  以使用较多的时差法超声波流量计为例,通过分别测量超声波在流体中顺流和逆流的传播时间,利用流体流速与超声波顺流逆流传播时间差的线性关系计算出流体的实时流速,进而得到对应的流量值。

时差法超声波流量测量原理图

  如图1所示,超声波在静止流体中的传播速度用C表示,则顺流和逆流的传播时间分别为:

  顺流和逆流的传播时间

  其中 包含换能器的响应时间、电路元件造成的延时等。由于顺流和逆流路径的一致性,顺、逆流的 是一样的。顺、逆流传播的时间差为:

   流体流速V和瞬时流量Q的计算公式

  TDC-GP2的高精度时间测量原理

  时差法超声波流量测量的关键是对超声波传播时间的测量,德国ACAM公司的时间数字转换芯片TDC-GP2提供典型值65ps的时间分辨率,测量范围从0到4ms。

TDC核心测量单元

  如图2所示,TDC核心测量单元对START和STOP脉冲之间的时间间隔进行测量。每个门电路的传输延时典型值是65ps,TDC核心测量单元通过计数在STOP脉冲到来之前START信号通过的门电路个数来获得START与STOP信号之间的时间间隔。TDC-GP2芯片内部通过特殊的设计和布线方法来保证每个门电路的时间延迟严格一致,但这个时间延迟是会随供电电压和温度而变化的,因此TDC-GP2设计了一个参考时钟用来对门电路的延时进行校准,同时这个参考时钟也会在被测时间较长时参与时间测量。

  由于TDC核心测量单元是对电信号通过的门电路个数进行计数,因此受计数器容量的限制它的时间测量范围是有限的,最多可测到1.8us,对于被测时间超过这个范围的应用,TDC-GP2则采取参考时钟测量和TDC核心测量单元相结合的方式来完成。如图3所示,TDC核心测量单元只测量TFC1和TFC2,而TCC则通过数参考时钟的周期数来完成测量,待测时间TSS便可通过如下计算获得:

待测时间TSS

  每次测量完成后TDC-GP2可以自动对门电路的延时做校准测量,如图3中的Cal1和Cal2,TDC核心测量单元对参考时钟的周期进行测量,而参考时钟的周期是已知的,因此由测量结果可反推出来精确的门电路延时。以上的计算、校正都是TDC-GP2自动完成的,最终经过校正的测量结果将以参考时钟的周期为单位给出,以方便用户计算。

时间测量和校准

  TDC-GP2的低功耗特性

  TDC-GP2创新的测量机制决定了其低功耗的特性。从图3中可以看出,TDC-GP2在进行时间测量时,其耗电较大的核心测量单元并不总是在工作,它仅仅用于测量START信号上升沿到下一个参考时钟上升沿的时间(TFC1),以及STOP信号上升沿到下一个参考时钟上升沿的时间(TFC2),而中间大量的时间测量是由数参考时钟周期数来完成的。TDC核心测量单元工作时的耗电为15mA,非工作时的耗电小于150nA。由于TDC核心测量单元的工作时间在一次测量中所占时间比例极小,而且在管道流量测量中每次测量的时间一般为微秒级,因此TDC-GP2的平均功耗能达到极低的水平,以每秒钟测量两次为例,平均功耗能做到小于2uA。

   TDC-GP2的脉冲发生器

  TDC-GP2不但具有超低功耗的时间测量单元,还集成了用于驱动超声波换能器的脉冲发生器。通过寄存器的设置可对产生脉冲的频率、相位进行控制,一次最多可以产生连续15个脉冲。 脉冲发生器有FIRE1和FIRE2两个输出管脚,这两个输出管脚分别具有48mA的驱动能力,如果将其并联使用可以将驱动能力增加到96mA。对于小管径的流量测量来说,无需前端放大电路,可以直接用FIRE输出脉冲来驱动超声波换能器。

  TDC-GP2在超声波流量计中的应用

  TDC-GP2具有高精度的时间测量功能,分辨率达到65ps,为时差法流量计的应用提供了基本的测量保障;TDC-GP2的脉冲发生器在小管径的流量测量中可直接驱动超声波换能器,无需另外增加驱动芯片;TDC-GP2测量的低功耗特性使得流量计的整体功耗大幅降低,为电池供电设备提供了优良的解决方案。

  使用TDC-GP2的超声波流量计方案相对于使用分立元件或者FPGA的超声波流量计方案,大大简化了硬件电路设计,只需搭配MCU和简单的比较器、模拟开关元件就可完成控制和时间测量回路的设计。该方案使电路设计得到简化的同时大大缩小了设备的PCB面积,使设备的生产、维护也更加方便容易。

  TDC-GP2还带有两路温度测量功能,可直接接PT1000或PT500热电阻进行温度测量,这为热量表的应用提供了集成化的解决方案。

应用TDC-GP2的流量计/热量表方案

  结语

  超声波原理的流量计将是未来流量计的发展方向,TDC-GP2为超声波流量计提供了最高集成度、最高测量精度、最低功耗的解决方案。基于TDC-GP2测流量原理的户用超声波热量表方案已由ACAM中国区总代理世强电讯进行了大面积推广,TDC-GP2已在超声波热量表中得到了广泛的实际应用,世强电讯可为您提供易于使用的评估套件,更多详情可致电世强电讯。

关键字:时间数字转换器  超声波流量计  热量表  时间测量  低功耗 编辑:金海 引用地址:高精度TDC-GP2在超声波流量计量中的应用

上一篇:霍尼韦尔转换器可在高温时提供可靠测量功能
下一篇:串行ADMAX1241及串行DAMAX539的应用

推荐阅读最新更新时间:2023-10-12 20:17

世强开放实验室,免费提供超低功耗精确测试
为帮助各大中小企业,完成产品测试的关键步骤,今年3月由中国最优质的半导体&元器件技术供应商——世强,筹办的“世强开放实验室”正式启用。“世强开放实验室”不仅免费为所有企业获取免费的测试服务,而且还提供免费的技术专家专业咨询和服务。 目前,世强开放实验室可支持的测试方案包括:IoT物联网射频性能测试方案、EMI预兼容(辐射)近场测量方案、低功耗测量方案、无线充电传输效率测量方案、材料+LCR参数测量方案等等。 而结合此前25年的服务经验,和这几个月的测试服务经验,世强发现了许多企业的共同需求,所以9月20日,世强特别举办开放实验室活动日专题研讨会,并邀请是德科技(Keysight)高级电源应用专家亲临现场讲解与指导,向工程师分享
[半导体设计/制造]
世强开放实验室,免费提供超<font color='red'>低功耗</font>精确测试
莱迪思发运首批低成本、低功耗LatticeECP4 FPGA样片
    21ic讯 莱迪思半导体公司日前宣布已经开始发运其下一代LatticeECP4™FPGA系列的密度最大的器件至部分客户。新的LatticeECP4 FPGA系列提供了多种200K LUT以下的低成本,低功耗的中档器件,具有高性能的创新,如低成本封装的6G SERDES,功能强大的DSP块和内置的基于硬IP的通信模块。LatticeECP4-190是这个系列中最高密度的器件,拥有183K  LUT,480个双数据速率DSP乘法器(18×18),5.8 Mbits存储器和12个6 Gbps SERDES通道,使得它非常适合各种成本和功耗敏感的无线、有线、视频和计算应用。莱迪思已发布了三个倒装芯片封装的LatticeECP4
[嵌入式]
蓝牙低功耗技术开创革命性的应用机会
  从1990年代出现在消费性电子产品的第一版蓝牙到众所期待的4.0版本,蓝牙技术标准历经多次更新和最佳化,不断让OEM厂和消费者都能藉由最新的技术变更与强化获得最大利益。蓝牙技术正快速达到饱和点,成为可携式装置的终极数据传输方法,而且至今蓝牙技术已搭载于全球约80%的移动电话上。从蓝牙技术发展成全世界最广普及的无线连接技术的历程看来,我们可以清楚看到蓝牙技术长期以来的发展重心就是要为今日市场上绝大多数的移动电话带来无线连接性。   移动电话在我们的生活中扮演越来越重要的角色。智能电话已能支持非常多重要的功能,从上网、收发email、浏览社群网站,到使用卫星导航,甚至还能让使用者在移动中分享定位信息等。蓝牙技术一步步发挥了移动
[网络通信]
Hifn推出即用型处理器SentryFlow 9150
存储与网络厂商Hifn近日宣布,该公司Sentry应用服务处理器(ASP)家族又增加了一位新成员――SentryFlow 9150。该新产品能够提供完整的安全解决方案,并具有功耗低、实施简便等优点。以Hifn的FlowThrough™架构为基础,SentryFlow 9150实现了可互操作安全特性,支持包括Suite B算法在内的多种协议,如高级加密标准(AES)和 椭圆曲线密码(ECC),同时产品功耗仅为3W。 Linley Grup行业分析师Bob Wheeler指出:“Hifn为SentryFlow 9150处理器开发出了独特的功能集。我们还没有看到任何一种竞争产品能够与9150的功能相匹敌。我们一向认为,
[嵌入式]
锂离子电池管理芯片的研究及其低功耗设计案例
1.1锂离子电池管理芯片的应用及发展 1.1.1锂离子电池的特点及应用 早在1912年,以金属锂作为电极的锂电池(Li Battery)的研究就开始了,到上世纪七十年代,不可充电的锂电池才首次应用在商业领域。上世纪八十年代,研究的重点集中在可充电的锂离子电池(Li-ion Battery)上,但并没有成功解决电池的安全性问题。一直到1991年,Sony公司首次实现了锂离子电池商业化,被认为是能源技术领域的一个重要的里程牌。 如表1.1所示,和Ni-Cd等其它二次电池相比,锂离子电池具有更高的能量密度(包括质量比能量和体积比能量)、更高的充放电循环、更低的放电率和更高的单节电池工作电压(3.6V)。显然,锂离子电池的高工作电压将
[电源管理]
锂离子电池管理芯片的研究及其<font color='red'>低功耗</font>设计案例
STM8 低功耗时钟管理
  第一次做低功耗设备,单片机 STM8s003 ,起初只设置了进入 Halt模式,IO配置是使用之前的状态。客户测试结果,9v的电池,10天电压损失比率为 13.5%。   自己做了下测试,运行状态电流 -- 7.2mA,待机电流 1.6mA.   首次改进,由于使用的是外部上拉,在进入 Halt模式前将单片机 IO全部配置为浮空输入状态,按键使用的 IO加上下降沿触发中。测试结果:运行状态电流 6.7mA;待机电流 133uA.   第二次改进,将 12M的内部时钟 4分频,CPU时钟 4分频,外设时钟只保留两个定时器和一个看门狗;测试结果:运行状态电流 2.36mA;待机电流 127uA. 经理说还是太大,至少要降到两位数,
[单片机]
stm32 低功耗设计[操作寄存器+库函数]
stm32的低功耗模式有三种: 睡眠模式(内核停止,外设运行) 停机模式(所有时钟都停止) 待机模式(1.8V内核电源也关闭) 在这三种模式中,最低功耗的是待机模式,在此模式下,最低只需要2uA左右的电流。整个1.8V供电区被断电,PLL、HSI、HSE振荡器都被关闭。SRAM和寄存器内容丢失。停机模式是次低功耗的的,其典型的电流损耗在20uA左右。最后就是睡眠模式。 stm32低功耗一览表 这三种低功耗模式,唤醒后程序都会初始化运行。在例子中做了一番论证,结果如此。 直接操作寄存器 进入待机
[单片机]
stm32 <font color='red'>低功耗</font>设计[操作寄存器+库函数]
高压数字控制应用中实现安全隔离与低功耗的解决方案
ISOFACE™数字隔离器是英飞凌产品组合中的新成员,借助英飞凌二十载隔离技术经验,提供完整的系统解决方案。 文: Jiaxin Tian,英飞凌高级产品应用工程师;Narayanaswamy Swaminathan博士,英飞凌产品定义工程师;Diogo Varajao博士,英飞凌隔离IC技术营销主管;Jimmy Wang,英飞凌首席应用工程师 引言 在高压应用中,实现有效的电气隔离至关重要,它可以避免多余的漏电流在系统中具有不同地电位(GPD)的两个部分之间流动 。如图1(左)所示,从输入到输出的DC返回电流可能导致两个接地之间产生电位差,从而导致信号完整性降低、质量下降。这就是隔离器(即隔离式栅极驱动器IC 或
[电源管理]
高压数字控制应用中实现安全隔离与<font color='red'>低功耗</font>的解决方案
小广播
502 Bad Gateway

502 Bad Gateway


openresty
502 Bad Gateway

502 Bad Gateway


openresty
502 Bad Gateway

502 Bad Gateway


openresty
502 Bad Gateway

502 Bad Gateway


openresty
502 Bad Gateway

502 Bad Gateway


openresty
随便看看
    502 Bad Gateway

    502 Bad Gateway


    openresty
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved
502 Bad Gateway

502 Bad Gateway


openresty