[组图]直流放大器

最新更新时间:2011-10-10来源: 互联网关键字:直流  放大器 手机看文章 扫描二维码
随时随地手机看文章
直流放大器能够放大直流信号或变化极其缓慢的交流信号,它广泛应用于自动控制仪表,医疗电子仪器、电子测量仪器等。常用的直流放大电路有单端式直流放大器、差动式直流放大器、调制型直流放大器等。
一、单端式直流放大器

单端式直流放大器需要解决级间直流电平配置问题,如下图(a)的电路是利用电阻Re2拉低BG2的射极电位以满足直流电平配置要求(即令Ube2=Uc1-Ue2).下图(b)的电路是利用D1及D2作电平配置。使BG2、BG3的偏听偏信置电压分别为Ube2=0.3伏、Ube3=0.45伏。D3起保护作用,避免使BG1基极受到过大的反压,如果前级输出电压主和后级输入电压相差较大,可以利用硅稳压管的稳定电压来代替硅二极管的作用。下图C的电路是利用较大的Rc1、Rc2来提高集电极电压,以实现前后级直流电平的配置。下图D的电路是利用PNP(BG1和BG3)与NPN(BG2)的极性相反来进行电平配置于,BG1的输出电流是BG2的输入电流,BG2的输出电流是BG2的输出电流是BG3输入电流,较好地实现了级间耦合,上述四种电路的最大缺点是零点漂移大。

二、差动式直流放大器
图2(a)是差动式直流放大电路的一种型式。它是由BG1、BG2一对特性相同的晶体管组成,而且电路元件也都是对称的。输入信号人别为Ui1、Ui2;单端输出信号分别是Uc1、Uc2;双端输出为UC1与UC2之差,即UO=UC1-UC2O差动电路具有下列特点:
1、具有抑制零点漂移能力
差动电路由于管特性相同和电路元件对称,所以当温度升高时,两管的集电极电流将得到同样的增量,即△IC1=IC20而双端输出为UO=IC1RC-IC2RC=0,所以输出没有零点漂移。
2、共模输入时,具有抑制放大能力
通常把幅度相等,相位相同的一对输入信号,称为共模信号,由下列电路图A可见,当Ui1=Ui2时,在对称条件下,则双端输出Uo=KUil-KUi2=0,
3、差模输入时,具有放大能力
通常把幅度相等,相位相反的一对输入信号,称为差模信号。当Ui1=-Ui2差模输入时,两面三刀管集电极输出分别为Uc1=-KUi1、Uc2=-KUi2;所以,差模放大倍数Kud: Kud=(Uc1-Uc2)/(Ui1-Ui2)=(-Ui1K-Ui1K)/2Ui1=-K=(-)(hfeRc)/(Rs+hie)
由于差动电路的双端输入电压、双端输出电压均比单管共射放大电路多了一倍,所以差模放大倍数Kud与单管共射电路的放大倍数相同
为提高抑制零漂能力,应使共模放大倍数越小越好,差模放大倍数越大越好,因而利用共模抑制比CMRR*=Kud/Kuc作为评价差动放大电路性能好坏的重要指标。
图2
4、具有稳定静态工作点的能力
图2(a)的射极度电阻Re对共模信号及温漂电平均有很强的负反馈作用。例如在温度升高时,Ic1、Ic2都同时增加,并产生下列负反馈过程:
结果使IC1、IC2的实际变化相对地减小,这里Re起着恒流作用,从而稳定静态工作点,显然Re越大,恒流作用也越大,抑制零漂的能力也就越强,引入辅助电,以抵消Re的压隆。使射极度对地电位能维持正常的数值。值得注意的是,对差模信号,Re不起负反馈作用,因此,它不会降低差模信号的放大倍数。
表一
四种形式(图2)的差动放大器的比较
接法 双端输入、双端输出(a) 单端输入、双端输出(b) 双端输入、单端输出(C) 单端输入、单端输出(d)
差模放大倍数 Kud=-(βRc/Rs+rbe) Kud=-(βRc/Rs+rbe) Kud=-[βRc/2(Rs+rbe)] Kud=-[βRc/2(Rs+rbe)]
共模放大倍数 Kuc→0 很小 很小 Kuc→0
共模抑制比 很高 很高
差模输入阻抗 Rid=2(Rs+rbe) Rid=2(Rs+rbe) Rid=2(Rs+rbe) Rid=2(Rs+rbe)
差模输出阻抗 Rod=2Rc Rod=2Rc Rod=2Rc Rod=2Rc
用途

常用在多级放大的中间级、输入级、也可作输出级

将单端输入转为双端输出,常用在输入级 将双端转为单端输出,常用在中间级和输入级 用在输入输出需要一端接地的地方、常用在控制电路及稳压电源
关键字:直流  放大器 编辑:神话 引用地址:[组图]直流放大器

上一篇:低频功率放大器音响
下一篇:[组图]惠威SWANS MS5 音箱套件

推荐阅读最新更新时间:2023-10-12 20:30

输出多种直流电压的AC/DC电源模块设计方案
1 引言 随着科学技术的不断发展,对设备的状态的检测要求越来越高,从而要求测试设备能够提供高精度的准确测试。要实现高精度的准确测试,测试设备中的电压信号经过电路后要提供准确的电压值,这就对电源模块的准确度提出了很高的要求。 在某测试设备的研制过程中,为了完成测试任务,该设备需要多种直流电压信号,并且要求能够对部分电压信号的输出进行控制。通过分析发现,该测试设备提供给电源模块的空间很小,且三路直流电压输出通过外部高低电平进行控制,现有的电源模块无法满足这一需求;为了解决这一问题,设计了一种输出电压可控的直流电源模块,用来为测试设备提供±12 V、+5 V、+9 V和+6 V 直流电压信号输出,同时能够根据控制信号输入端电压的
[电源管理]
输出多种<font color='red'>直流</font>电压的AC/DC电源模块设计方案
基于状态观测器实现转速及负载转矩估计的直流调速系统
    摘 要: 在双闭环直流调速系统中,需要传感器检测电流和转速的反馈值。介绍了运用状态观测器理论设计出的一种能够估计转速和负载转矩参数的二维观测器,并介绍了将估值运用到直流调速系统的设计中从而实现负载转矩的扰动补偿,使仿真结果达到了设计要求。     关键词: 直流调速系统 转速 负载转矩 观测器         目前直流调速系统广泛采用转速、电流双闭环调节回路,转速检测元件有测速发电机和光电码盘。直流测速发电机存在造价高、碳刷需经常维护、不易在现有系统上加装等问题;光电码盘也有造价高、需与电机轴弹性连接等问题。在构成转速负反馈时,通过状态观测器实现对转速的估值是一种可行的途径。在直流调速系统中
[应用]
ADRF6850解调器特性/应用/功能框图
  ADRF6850是一款高度集成的宽带正交解调器、频率合成器和可变增益放大器(VGA)。该器件工作在100 MHz至1000 MHz的频率范围,适用于窄带和宽带通信应用,能够执行从中频(IF)直接到基带频率的正交解调。   ADRF6850解调器包括一个集成VCO的高模数小数N分频频率合成器,其频率分辨率优于1 Hz,前端VGA提供60 dB的增益控制范围。   所有片内寄存器均通过用户可选的SPI或 I2C 接口进行控制。该器件采用3.15 V至3.45 V的单电源供电。    ADRF6850功能框图   特性    ● IQ 正交解调器    ● 集成小数N分频 PLL 和VCO    ●
[网络通信]
用于PDIC的跨阻放大器的优化设计
提出了一种用于PDIC 的跨阻放大器。电路由三级相同的推挽放大器级联而成,每级均采用一动态电阻对负载进行补偿,以提高放大器的相位裕度。反馈电阻由一栅极受控的PMOS 管替代,避免了大尺寸多晶硅电阻引入的附加相移,增加了电路的稳定性。采用XFAB 0. 6μm CMOS 工艺提供的PD K,在Cadence Spect re 环境下进行电路设计、仿真验证。仿真结果表明,电路的增益、带宽及稳定性均得到满意结果。
[模拟电子]
用于PDIC的跨阻<font color='red'>放大器</font>的优化设计
基于MAX2742型电路的GPS接收机设计
   1 引言   GPS卫星发送的导航定位信号是一种可供无数用户共享的信息资源。对于陆地、海洋和空间的广大用户,只要用户拥有能够接收、跟踪、变换和测量GPS信号的接收设备即GPS信号接收机,就可以在任何时候用GPS信号进行导航定位测量。GPS信号接收机的功能是能够捕获到按一定卫星高度截止角所选择的待测卫星的信号,并跟踪这些卫星的运行,对接收到的GPS信号进行变换、放大和处理、以便测量出GPS信号从卫星接收机天线的传播时间,解译GPS卫星所发送的导航电文,实时地计算出测站的3维位置甚至3维速度和时间。   典型GPS接收机的结构如图1所示。   1575.42MHz的GPS信号在进入下变频IC前,先经过低噪声放大器(LNA)和滤
[网络通信]
硅锗技术以功率放大器进军无线通信和手机应用领域
随着工艺进步,硅锗技术业已用于CDMA、GSM和 WLAN 应用中的高功率放大器,提供新一代集成解决方案   现今,硅锗 (silicon germanium, SiGe) 技术已经从一种富有潜力的技术,发展成为目前和新一代移动设备的先进解决方案,广泛应用于手机、无线局域网 (WLAN) 和蓝牙等产品。自上世纪 80 年代问世以来,SiGe 一直是那些追求低成本,并要求性能高于普通硅器件的高频应用开发人员最感兴趣的一种半导体材料。在无线通信应用中,这种技术已被广泛接受,用于下变频器、低噪声放大器 (low-noise amplifier, LNA)、前置放大器 (preamplifier) 和 WLAN 功率放大器 (power
[半导体设计/制造]
共射一共基组合宽频带视频放大器
现以康佳P2592N型机的视放输出电路为例(见图1,所示),由V502与V501组成R信号的共射、共基极放大器:V503与V504组成G信号的共射、共基极放大器;V505与V506组成B信号的共射、共基极放大器。从N101(TB1240N) 18、19、20脚输出的R, G、B三基色信号,经隔离电阻R301、R302、R303通过接插件XS305到CRT板的XP501的1、2、3脚,分别加到共发射极放大器V502, V504, V506的基极,基极串联电阻R514, R521, R5 28{均为560Ω)及外部接地的C515, C516, C517(均为10pF)与前端的三只稳压二极管反偏结电容组成低通滤波器(-3dB点频率
[模拟电子]
共射一共基组合宽频带视频<font color='red'>放大器</font>
基于Pspice的放大器环路的稳定性分析
   虽然在较低频率下可以较轻松地检查一个简单放大器的稳定性,但评估一个较为复杂的电路是否稳定,难度可能会大得多。本文使用常见的Pspice宏模型结合一些简单的电路设计技巧来提高设计工程师的设计能力,以确保其设计的实用性与稳定性。   导致放大器不稳定的原因   在任何相关频率下,只要环路增益不转变为正反馈,则闭环系统稳定。环路增益是一个相量,因而具有幅度和相位特性。环路由理想的负反馈转变为正反馈所带来的额外相移即是最常见的不稳定因素。环路增益相位的“相关”频率,一般出现在环路增益大于或等于0dB之处。 图1:总等效噪声密度-反馈电阻关系曲线。   如图2所示的放大器电路,通过断开环路,测量信号
[单片机]
基于Pspice的<font color='red'>放大器</font>环路的稳定性分析
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved