蜂窝电话功率放大器 天线接口的自适应调谐

最新更新时间:2011-12-05来源: 互联网关键字:蜂窝电话  功率放大器  调谐 手机看文章 扫描二维码
随时随地手机看文章
引言

  目前无线产品的设计原理涉及将功率放大器(PA)和低噪声放大器(LNA)设计为具有独立于天线的50Ω阻抗,而天线也被尽可能设计为在所需的频带上具有50Ω阻抗。集中多个无线应用在单个设备中需要天线在较多频带上操作,会影响性能。在将电话用作调制解调器时,无线数据应用将其他导体和电介质引入到天线环境,诸如木质和金属桌面。这些天线环境因素通过吸收和反射两种途径影响其性能。

  两种常见的解决反射效应的方法是使用负载不敏感PA或连续可调谐天线。但其缺点是:尽管负载不敏感PA能将性能提高到4:1电压驻波比(VSWR)失配,可是用于收发信机的接收机部分的噪声源不敏感LNA不是标准供货产品;连续可调谐天线在实验室环境中提供了信道带宽上的理想调谐,但这是以物料成本增加和电路板面积变大为代价的。

  折衷的解决方案

  本文提出了一种折衷的解决方案,该方案在实现完整解决方案的最大利益,即为几乎所有阻抗提供匹配的同时,仅需较少的电路和较少的电路板面积。目前已经开发出了将PA和前端模块RF电子装置并入天线内部的蜂窝无线电天线模块。针对天线负载条件使天线和RF电路之间实现最佳匹配。对于处理天线经历不同负载条件的可调谐匹配电路,这是一种低成本的方法。该方法可使这些阻抗匹配达到20dB的良好的回波损耗,但不具备理想的50Ω阻抗。同时,该方法不能使所有的可能阻抗匹配达到良好的回波损耗,但可使天线在上述多种严酷环境条件下经历的阻抗匹配。这将实现理想的50Ω阻抗可调谐电路的大部分性能的提高,同时可显著减少成本,即电路板面积、软件开发成本和BOM。

  已开发的可调谐匹配电路可使最严酷应用条件下天线的阻抗匹配达到良好的回波损耗。如图1所示,针对该电路进行仿真以观察能够达到的不同阻抗匹配等级,即20dB和理想50Ω的阻抗范围。

  

简单的单调谐元件匹配电路的范围

 

  图1 简单的单调谐元件匹配电路的范围

  图2所示为该范围的6个应用条件下的天线阻抗。

  

 

  图2 具有附加的天线阻抗的调谐电路范围

  这6个条件均得到该可调谐匹配电路的良好处理。然而,不同于使用较复杂和昂贵的可调谐匹配电路,在另外两个条件下放弃了20dB的匹配标准。在高频带和低频带上对超过20个不同的条件进行了测试。

   可调谐匹配电路的带宽容量

  其中所关注的第一个指标是可调谐匹配电路的带宽容量。出于两个原因可确认该指标是重要的。第一个原因在于蜂窝接收机。尽管自适应调谐是针对移动设备的发射机工作的,但其不能降低接收机的性能。接收机工作于全球移动通信系统(GSM)应用中的不同频带。第二个考虑是W-CDMA、WiMAX或WLAN等的宽带调制应用。

  如图3所示,简单的低成本单调谐元件匹配电路具有大的带宽容量,该电路在理论上能同时覆盖DCS 1800和PCS 1900频带,如图3左上角的曲线所示。然而,实际上如图3下面的两个曲线所示,利用该单调谐元件匹配电路可以使完整的DCS或PCS频带上的回波损耗提高10dB。

  

 

  图3 GSM高频带下的调谐电路回波损耗性能的改善

  这产生两个主要结果。第一个结果上面已经提到。该电路呈现出可处理宽带宽信号的能力,即1.75GHz或1.88GHz处的100MHz信号。第二结果涉及方案实现。跨频谱所需的调谐区别不大。这意味着在切换或其他频率变化过程中不需要手机对调谐电压进行大的调整,因此可显著减少对控制环路动态响应的考虑。不需要考虑控制环路在进行调整时会在部分突发过程中偏转到较差的调谐电压。

  图4所示为GSM低频带的情况,尽管没有必要,但在理论上可同时覆盖完整的800MHz和900MHz频带。

  

 

  图4 GSM低频带下的调谐电路回波损耗性能的提高

  虽然该低频带的性能提高低于高频带的性能提高,但仍然是有利的。然而,利用简单的单调谐元件匹配电路可使完整的800MHz GSM或900MHz GSM频带的回波损耗性能提高超过5dB。而且,图4中示出的金属元件不是天线。在该情况中天线位于电话/塑料机壳内部。该金属元件是平衡-非平衡(BALUN)器件。BALUN可消除导线效应或自导线辐射的电流。

  将天线置于面对远离头部方向的手机顶部且将手放在手机上面时,呈现出PA的所有可能阻抗。这些阻抗是在调谐过程中由施加到调谐元件的调谐电压生成的所有可能阻抗。当环路检测到好的匹配条件时,该环路将停止工作,因此该环路并未调谐到每个上述调谐电压。此外,在切换时可能发生的跳频过程中,相同条件下该环路将不会过度调节电压。然而,在该条件下呈现给PA的最差情况是3dB的回波损耗。由于匹配电路在任何调谐电压下均不会超过该值,因此该控制环路将不再呈现该最差阻抗。这不会影响商用功率放大器在所有相位角下能承受10:1 VSWR。此外,该控制环路可被设计为具有两个环路动态响应,可首先使用快速环路寻找好的回波损耗,随后该环路可以切换到较慢的响应。

尽管实现了回波损耗的改善,但设计者最关心的是整体RF的性能。调谐电路必须提高天线和功率放大器系统的整体效率,同时保持或改善线性性能。通过在调谐元件上设定相同的电压并且使用导线连接功率放大器和可调谐匹配电路,测量调谐电路后面的天线阻抗。测试结果表示,在所有功率电平下,回波损耗和整体效率都有明显改善,且具有相同或更好的线性。相同的技术可用于如3G数据蜂窝应用的其他线性调制技术。本文的思路是使调谐电路简单化和小型化。这对于3G应用也有相同作用,且能扩展到包括用于线性控制的谐波调谐,使这些应用具有更高的效率。

  最后,在有调谐和无调谐情况下在天线测量室中使用仿真的头和手检验性能。该测量室需要连续信号,而功率放大器不能承受高功率电平下的连续操作。这需要降低辐射功率电平,而在该条件下,调谐性能改善并不明显。然而,在三种测试情况中仍然得到1dB的整体效率提高,如表1所示。

  表1 有调谐和无调谐的结果对比

  

 

  调谐元件特性

  最后的考虑是匹配电路中使用的调谐元件。如果对该元件的要求过于苛刻以致难以实现,则使该解决方案的成本太高而受到限制。表2给出调谐元件的性能。

  表2 调谐元件特性

  

 

  调谐电路拓扑需要略低于10:1的调谐范围,这限制了供货商的范围,但仍然有供货商能满足表中所示的范围要求。所有其他的参数均满足或优于调谐电路元件以及蜂窝电话语音应用和3G数据应用的要求。此外,调谐元件的频率范围和功率容量性能优于表中所示的范围。表中的限制是由测试设备的限制产生的。

  结语

  本文给出的简化可调谐匹配电路能在蜂窝应用的多种严酷的环境条件下改善由天线带给PA的回波损耗。相对于能够将几乎任何阻抗匹配到理想的50Ω阻抗的较昂贵的、较大的可调谐系统,该简化的可调谐电路仅使用一个可调谐元件即可实现该可调谐系统的大部分性能,同时可降低成本和尺寸。此外,该电路具有适用于GSM以及宽带调制系统的足够的带宽容量。RF性能测试表明该电路可以在多种严酷的测试条件下显著提高效率,同时保持良好的线性性能。在头和手阻挡的条件下执行测试时,该调谐技术还可用于满足连接到单个天线的多个无线应用的宽带工业需求。能够匹配多个频带的特性,即使在自由空间条件下,也能降低天线的回波损耗。最后,即使在无调谐情况下,同时设计天线和功率放大器仍有利于控制接口阻抗。这对于谐波而言特别重要。

关键字:蜂窝电话  功率放大器  调谐 编辑:神话 引用地址:蜂窝电话功率放大器 天线接口的自适应调谐

上一篇:通过集成与功耗调整解决超声系统面临的工程技
下一篇:频率抖动 性能优劣自己决定

推荐阅读最新更新时间:2023-10-12 20:33

微波功率放大器的ALC环路设计
ALC(自动电平控制)环路控制属于反馈控制电路的一种,其作用是当输入信号变化较大时,功率放大器的输出功率基本保持不变。具体而言,即当输入信号较小时,ALC电路不起作用;而当输入信号变大到一定程度后,ALC电路开始作用,并根据输入信号的大小动态调整功率放大器的增益,使输出功率保持不变。 在功率放大器中,ALC的主要作用是限制功放输出功率以使其工作在线性状态,同时当输入信号功率超过额定输入功率时,防止功放过激励而损坏。设计的ALC控制电路简洁易实现,且具有 20 dB的动态范围,并在S波段超过10%的相对带宽内实现了ALC环路控制。 1 ALC环路控制的基本原理 ALC环路控制电路主要包含可变增益器件、功率放大器、检波电路
[嵌入式]
可用于大功率单极电源的500W功率放大器输出电路
可用于大功率单极电源的500W功率放大器输出电路 电路的功能 本电路是功率放大器的输出电路,负载为8欧,有效输出为500W,输出电压为180VP-P,输出电流峰值可达10A以上,所以它也可用于高输出单极电源。电源电压为正负95V即使低些也无须改变电路参数。 电路工作原理 负载为8欧时,为了输出500W的功率,根据VCC=√8RLP,VCC应为179V,再将损耗电压考虑在内,可采用正负95V双极电源。四个并联流入的总集电极电流IO(MAX), 根据IO(MAX)=√2PO/RL公式计算,约为11.2A,应配备能供给这样电流的电源。 如果TT5~TT12各晶体管的直流电流放大率HFE2最低为50,
[模拟电子]
可用于大功率单极电源的500W<font color='red'>功率放大器</font>输出电路
音频功率放大器电路图
三极管功率放大器,与小信号放大的区别就在于输出电流比较大,也就是输出功率比较大。典型的例子就是音响。 根据三极管工作区的不同,功率放大器分为ABCDE等类别,下面主要来了解一下A类功放。 接下来简单看一下B类与AB类功率放大器 最后我们来看一个扩音器的电路 这是一个可以实际使用的扩音器电路,动手做起来吧!
[嵌入式]
音频<font color='red'>功率放大器</font>电路图
恩智浦与和硕联合推出半迷你卡电视调谐
恩智浦半导体(NXP Semiconductors)日前宣布,恩智浦基于其最新一代的多标准硅调谐器TDA18271,与设计、制造和服务提供商和硕联合(Pegatron)的合作项目成功完成了全球首款半迷你卡大小的混合DVB-T电视调谐卡的开发。和硕联合采用了高度集成的恩智浦SAA7231NE A/V解码器,该解码器支持模拟及DVB-T电视信号的接收,可以接收来自包括有线和地面在内的节目信号,并且具有最低的功耗,使其能够被用以开发只有迷你卡一半大小的混合DVB-T解决方案。 恩智浦SAA7231系列非常适合针对安装了Microsoft Media Centre Edition (MCE)的PC的电视卡,它支持
[家用电子]
场效应8管功率放大器
功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。
[模拟电子]
F类与逆F类功率放大器的效率研究
摘要 为了对F类与逆F类功率放大器的效率进行研究,首先从理论方面对两种放大器工作模式各自的效率进行了计算。通过计算可以看出,在相同的输出功率下,因为晶体管导通内阻的存在,逆F类功率放大器的效率优于F类功率放大器。再通过软件仿真设计F类和逆F类功率放大器,在相同的输出功率下,逆F类功率放大器的最高漏极效率为91.8%,F类功率放大器的最高漏极效率为89.3%。 关键词 F类;逆F类;功率放大器;漏极效率     随着无线通讯系统的迅速发展,对高效率射频功率放大器的需求逐渐增加。如何提高功率放大器的工作效率已成为一个重要课题。为提高效率,研究人员将大量精力专注于放大器的工作模式上,例如D类,E类,F类和逆F类功率放大器。F类和逆F类两
[电源管理]
F类与逆F类<font color='red'>功率放大器</font>的效率研究
飞思卡尔推出用于无线控制的低功率射频传输/接收设备
MC33696 UHF 收发器和MC33596 接收器为汽车、消费电子和工业应用提供经济高效的解决方案 德克萨斯州AUSTIN-2007年5月29日 -飞思卡尔半导体公司近日正式推出支持低功率无线连接的最新射频产品。MC33696 PLL-调谐UHF收发器和MC33596低压接收器是接入和远程控制设备,旨在帮助开发商简化现有的射频解决方案,向产品中添加无线控制的便利性。 MC33696 和MC33596可以用于远程无匙进入、车库大门控制、射频ID(RFID)产品、告警监控、无线告警与安全系统、家庭自动化和自动读表等。飞思卡尔还可以提供一种免费的参考设计,帮助开发人员在多种应用中评估并展示与上述设备的低功率无线连接。
[新品]
传送视频内容的硅调谐器技术分析及应用
1 引言 一般通过电信号近距离传递信息,可以直接传送基带信号,但远距离时必须把基带信号调制到射频信号上,即把低频的信号频谱搬移到高频频谱上。而接收端又必须从调制的信号中解调出基带信号,也就是从高频信号上把有用信号搬移到低频。同时接收端往往会收到许多信号,我们还需选择自己需要的信号。这个完成选择需要的信号和信号频谱向低搬移的器件就是调谐器(在模拟电视时代,调谐器通常用铁盒封装,也称高频头)。 调谐器应用广泛,它可以传送视频、声音、数据等等信息。在种类繁多、形状各异的调谐器中,最常见的、也是本文要讨论的就是传送视频内容的调谐器(以下“调谐器”就特指这类调谐器)。 随着北京奥运会临近和地面数字电视节目
[家用电子]
传送视频内容的硅<font color='red'>调谐</font>器技术分析及应用
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved