基于FPGA的DDC滤波器设计与仿真

最新更新时间:2012-09-26来源: 互联网关键字:FPGA  DDC  滤波器  仿真 手机看文章 扫描二维码
随时随地手机看文章

近年来,软件无线电已经成为通信领域一个新的发展方向,数字下变频技术(Digital Down Converter-DDC)是软件无线电的核心技术之一,也是计算量最大的部分。基于FPGA的DDC设计一般采用CIC、HB、FIR级联的形式组成。同时,由于CIC滤波器的通带性能实在太差,所以中间还要加上一级PFIR滤波器以平滑滤波器的通带性能。而众所周知用FPGA从事算法的开发是一件难度比较大的工作,而Xilinx公司开发的System Generator工具为算法的快速开发及仿真带来了巨大的方便。本文首先对CIC、HB、FIR滤波器的原理及设计作了简单的说明,最后用Matlab结合System generator对本文所设计的DDC滤波器作了一个仿真。

  1 总体结构设计

  数字下变频技术作为数字信号处理中的一个关键技术,它通常由以下儿部分组成。首先,CIC滤波器,它实现简单而且能实现较大的下抽率。其次,由于CIC滤波器带内平坦性能太差,因此在CIC滤波器之后一般要加上PFIR来平滑带内平坦度。最后,由于CIC滤波器的抽取因子小宜取得过大,冈此还要用HB滤波器的级联来进一步增加抽取率。下面本文以如何设计一个原信号采样率为72 MHz的、有效信号带宽为2.05 MHz的、下抽率为14的、主旁瓣衰减80 dB以上的、通带平坦度小于0.2 dB的下抽滤波器为例说明下抽滤波器的设计。

  实际中常用的DDC的实现框图如图1所示。

  

  2 CIC滤波器设计

  CIC滤波器是近年来在下变频中用得最多的一种技术,CIC滤波器在多速率信号处理中具有特别重要的位置,它可以充当内插滤波器,也可以充当抽取滤波器,主要取决于积分器和梳状滤波器的连接顺序。由于CIC(级联积分梳状)滤波器不需要乘法运算和存储系数,因此实现非常简单,在采样率变换过程中经常使用CIC滤波器进行数字滤波。

  考虑到CIC滤波器的除数及抽取因子不宜取得过大,所以实际巾的下抽滤波器一般都是采用CI协同HB来完成下抽的任务。比如这里我们要下抽14,一般的做法是先用CIC下抽7然后用HB下抽2 如果这时一级HB仍然不满足要求的话,我们可以通过适当增加HB的级联数目来完成下抽。例如,如果要下抽28,那么可以先下抽7,然后通过两级HB来完成下抽4,进而达到下抽28的目的。

  在MATLAB中通过设置下抽因子,需要的通带截止频率等参数可以方便的设计出想要的CIC滤波器。下图为本次设计中设计出的CIC滤波器的幅频响应。

  

  通过将其通带细节图放大,可以发现在2.05 MHz处通带的衰减为4.508 dB。

  

  3 PFIR滤波器设计

  PFIR滤波器的设计目标是在满足通带波纹和过渡带宽尽可能窄的同时使得阻带衰减尽可能大,PFIR的阶数越高,PFIR滤波器的通带波纹,过渡带宽,阻带衰减等特性就越好。

  PFIR存在的意义是它能够改善CIC滤波器带内平坦度较差的问题,因此,其带内的幅频响应的走势和CIC正好相反,从而在一定程度上平滑CIC滤波器通带内衰减的趋势。在设计好了上一级CIC滤波器的基础上,通过输入已经完成的上级滤波器参数在MATLAB中可以自动生成与其互补的PFIR滤波器,它的幅频响应如图4所示。

  

  通过将这里设计的PFIR滤波器与上节设计的CIC滤波器进行级联,级联后的滤波器的幅频响应较之于之前设计的CIC滤波器其通带性能有了很大的提高,级联前的CIC滤波器的通带波纹为4.508 dB,而级联后仅为0.11 dB将其通带细节图如图5所示。

  

4 HB滤波器设计

  半带滤波器是一种特殊的FIR滤波器,在多速率信号处理中有着至关重要的作用。在常见的下抽滤波器设计中第二级一般采用HB滤波器要用到第二级的原因是综合考虑到带内平坦度和阻带衰减度等因素使得第一级CIC抽取滤波器的级数和抽取因子不宜过大,HB滤波器的带内平坦度好,计算效率高,在高速率信号处理中发挥着重要的作用,在抽取因子为2的幂次方的场合更是如鱼得水。

  HB滤波器的通带和阻带具有对称的关系,因此其通带波纹和阻带波纹相等。但是使其成为数字信号处理中非常常用的一种滤波器的主要原因却是因为其系数有一半均为0。如此,在低速率数字信号处理中或许还不是很重要,但是在那些对实时性要求非常高的系统中,这种将计算量减半的性能就使得其得到了广泛的应用。

  综合考虑前方中提出的设计的要求,文中设计的HB滤波器的幅频响应如图6所示。

  

  将文中设计的CIC,PFIR,HB级联之后得到的总的滤波器的幅频响应如图7所示,可以发现较之于CIC滤波器的通带性能,此时级联滤波器的通带性能已经有了较大的提高。其通带细节图如图8所示。

  

  

  5 system generator仿真

  system generator for dsp是业内领先的高级系统级FPGA开发工具。本次设计是在基于Xilinx(赛林思)的system generator的基础上完成的。赛林思是全球领先的可编程逻辑完整解决方案的供应商,它研发、制造并销售范围广泛的高级集成电路、软件设计工具以及作为预定义系统级功能的IP(InteIlectual Property)核,客户使用Xilinx及其合作伙伴的自动化软件工具和IP核对器件进行编程。System generator是Xilinx公司进行数字信号处理开发的一种设计工具,它通过将Xilinx开发的一些模块嵌入到MATLAB的Simulink库中,可以在Simulink中进行定点的仿真,可以设置定点信号的类型,这样就可以比较定点仿真与浮点仿真的区别。并且它还可以生成HDL文件,或者网表直接供ISE调用。较之于直接用MATLAB进行算法的仿真其主要优势作于它是基于定点的,同时,它是由各个供应厂商直接提供的库,因此它能够充分认识FPGA内部的资源等,其仿真也更精确可靠。

  虽然,system generator能直接生成供底层FPGA调用的代码以及网表,但是,通常并不这样做。相对于人工编写的代码,system genera tor生成的代码相对冗余度高,资源利用也不及人工编写的代码合理。但是,在某些需要快速进行算法开发的项目中,这种方式无疑为用FPGA从事快速的算法开发提供了一个捷径。

  将MATLAB与system generator集成后,由图1所示的原理框图,搭建了用于仿真的system generator模块,如图9所示。

  

  在输入端输入幅频响如下图所示的信号,其有用信号范围173~25.5 MHz。另外为了方便仿真结果的观察,又加入了2个大的噪声信号分别位于32.4MHz,12.4 MHz。

  

  将上图所示的信号送入DDC网络后,信号变成I/Q两路信号,将这两路信号组合成复数信号后得到的复数信号的频谱图如图11(a)所示。

  

  图11(a)为原输入信号的有用信号附近的细节图,而图11(b)为经过DDC网络后得到的复数信号的幅频响应图。由于simulink的频谱绘制工具显示刷新的问题它们看起来有了一点点的误筹,但是,也可以发现经下变频后的信号有效的恢复了原信号的频谱信息。它将原输入信号的负边频线性搬移到了以0频为中心的带宽为4.1MHz的频谱上来。

  6 结束语

  实际项目中接触到的信号处理任务大多为带通信号,如果直接采用传统的奈奎斯特采样定理对模拟信号进行采样,然后进行数字信号处理任务,这样对后端的DSP器件的实时性要求太高。因此,通常我们都要先用一个FPGA来完成数字信号的下变频操作,之后再由后端的DSP器件来完成信号处理任务。因此,如何合理的设计DDC下变频就显得特别重要。本文针对如何设计DDC滤波器以及基于FPGA的System Generator的仿真都作了简单的介绍。

关键字:FPGA  DDC  滤波器  仿真 编辑:神话 引用地址:基于FPGA的DDC滤波器设计与仿真

上一篇:MIMO接收器需要高性能的双通道无源混频器
下一篇:基于虚拟仪器的CANopen协议监控面板设计

推荐阅读最新更新时间:2023-10-12 20:42

FPGA器件的在线配置方法
摘要:介绍基于SRAM LUT结构的FPGA器件的上电配置方式;着重介绍采用计算机串口下载配置数据的方法和AT89C2051单片机、串行EEPROM组成的串行配置系统的设计方法及实现多任务电路结构中配置的方法,并从系统的复杂度、可靠性和经济性等方面进行比较和分析。 在当今变化的市场环境中,产品是否便于现场升级,是否便于灵活使用成为产品能否进入市场的关键因素。在这种背景下,Altera公司的基于SRAM LUT结构的FPGA器件得到了广泛的应用。虽然这些器件应用广泛,但由于其内部采用SRAM工艺,它的配置数据存储在SRAM中。由于SRAM的易失性,每次系统上电时,必须重新配置数据,即ICR(In-Circui
[工业控制]
FPGA控制CLC5958型A/D转换器实现的高速PCI数据采集卡
摘要:详细介绍CLC5958的内部结构和基本用法,提出一种基于FPGA和PCI总线的高速数据采集卡设计方案,并通过仿真验证了该方案的可行性。该采集卡的采集速度快,精度高,结构简单,扩展方便,抗干扰能力强,适宜和于高速智能仪器和其他数据采集场合。 关键词:CLC5958;现场可编程门阵列;数据采集卡;PCI总线 引言 随着信息技术的发展,基于微处理器的数字信号处理在测控、通讯、雷达等各个领域得到广泛的应用。被处理的模拟信号也在向高频、宽带方面发展,但这需要高速、高分辨率的数字采集卡以将模拟信号数字化。美国国家半导体公司新推出的系列高速、高分辨率模/数转换器(如CLC5958)就非常适用于需要高速、高分辨率的信号采集系统。
[传感技术]
嵌入式设计必备ARM仿真器知识
一、嵌入式产品的开发周期 典型的 嵌入式 微控制器开发项目的第一个阶段是用C编译器从源程序生成目标代码,生成的目标代码将包括物理地址和一些调试信息。目前代码可以用软件模拟器、目标Monitor或在线仿真器来执行和调试。软件模拟器是在PC机或工作站平台上,以其CPU(如x86)及其系统资源来模拟目标CPU(如P51XA),并执行用户的目标代码;而目标Monitor则是将生成的目标代码下载到用户目标板的程序存储器中,并在下载的代码中增加一个Monitor任务软件,用来监视和控制用户目标代码的执行,用户通过目标板上的串行口或其它调试端口,利用桌面计算机来调试程序。 程序的调试是通过设置断点、使程序在指定的指令位置停止运行来
[电源管理]
在数字电路方案设计中DSP与FPGA的比较与选择
数字信号处理技术和大规模集成电路技术的迅猛发展,为我们设计 数字电路 提供了新思路和新方法。当前数字系统设计正朝着速度快、容量大、体积小、重量轻的方向发展。DSP和 FPGA 技术的发展使这一趋势成为可能和必然。 和计算机一样,数字信号处理的理论从60年代崛起以来,到80年代DSP产生,它飞速发展改变了信号处理的面貌。今天DSP已广泛应用在语音、图像、通讯、雷达、电子对抗、仪器仪表等各个领域。DSP起了十分关键的作用,成为数字电路设计的主要方法。 二十世纪80年代以来,一类先进的门阵列——FPGA的出现,产生了另一种数字电路设计方法,具有十分良好的应用前景。基于FPGA的数字电路设计方式在可靠性、体积、成本
[嵌入式]
东北大学本科生团队研发“深度学习”FPGA神经芯片
不久前的一天,在东北大学浑南校区信息学馆前,计算机科学与工程学院学生蒋承知的脚下有一个小小的、如螃蟹般的机器人紧紧地跟随着他,寸步不离,正在对他的行为进行“深度学习”,蒋承知则仔细地检查着机器人的各项参数,并进行详细记录。 蒋承知是东北大学的一名本科生,他和同伴于起、叶文强、甘淞元组成的创新团队,将现场可编程门阵列FPGA神经芯片运用于人工智能深度学习领域,采用卷积神经网络,尝试在芯片中模仿人脑以大规模的平行方式处理信息,目前项目组已成功实现将基于FPGA的神经芯片植入到硬件资源进行深度学习,并获得大学生创新项目国家级资助。 深度学习是指通过学习样本数据的内在规律和深层特征,使神经网络结构能够像人一样具备分析和自主学习新东
[半导体设计/制造]
基于FPGA的快速傅立叶变换
摘要:在对FFT(快速傅立叶变换)算法进行研究的基础上,描述了用FPGA实现FFT的方法,并对其中的整体结构、蝶形单元及性能等进行了分析。 关键词:FPGA FFT 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。 1 整体结构 一般情况下,N点的傅立叶变换对为: 其中,WN=exp(-2 pi/N)。X(k)和x(n)都为复数。与之相对的快速傅立叶变换有很多种,如DIT(时域
[半导体设计/制造]
FPGA的时代到了!
    从28纳米到3D堆叠,FPGA身价突然翻涨,不再是过去那个扮演配角的被支配角色,反而由于其功能大跃进、重要性大增,目前在许多应用中,已经逐渐成为支配系统运作的主角。而现阶段FPGA的三大发展方向:28纳米、3D堆叠,以及SoC系统化,也成为FPGA制霸市场的决胜关键。 FPGA从配角变主角 FPGA市场对于28纳米的争霸,已经从几年前的蓝图布局,到产品试制,到目前已正式量产,也宣告FPGA真正走入了28纳米制程的新阶段。主要厂商包括Altera、Xilinx、Lattice等,纷纷端出28纳米FPGA大餐喂饱市场那张饥渴的大嘴。28纳米与FPGA划上等号,只要拥有28纳米产品,就象征了该厂家所拥有的技术实力与研发创新,而端不
[嵌入式]
基于Labview的雷达动目标仿真
雷达探测的目标通常是运动的物体,例如空中的飞机、导弹,海上的舰艇,地面的车辆等。但在目标周围经常存在着各种背景,例如各种地物、云雨、海浪以及敌人施放的金属丝干扰等。这些背景可能是完全不动的,如山和建筑物,也可能是缓慢移动的,如海浪和金属丝干扰,一般来说,其运动速度较目标小。 当杂波和运动目标回波在显示器上同时显示时,会使目标的观测显得困难。如果目标处在杂波背景内,弱的目标湮没在强杂波中,特别当强杂波使接收系统产生过载时,发现目标十分困难。目标不在杂波背景时,要在成片杂波中快速分辨出运动目标回波是比较困难的。如果雷达终端采用自动检测和数据处理系统,则由于大量杂波的存在,将引起终端过载或不必要地增加系统的容量和复杂性。因此,无论从
[工业控制]
基于Labview的雷达动目标<font color='red'>仿真</font>
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved