基于DSP的嵌入式视频监测

最新更新时间:2013-09-22来源: 互联网关键字:DSP  嵌入式  视频监测 手机看文章 扫描二维码
随时随地手机看文章

近几年,随着DSP及嵌入式技术的快速发展,采用DSP嵌入式系统的视频设备已在各领域中被广泛应用。本文利用ADSP Blackfin533(BF533)为核心处理器,设计了视频检测系统,实现了视频图像的采集、处理和网络传输,该系统具有体积小、功耗低、性能高、可便携等优点。

  1 系统硬件平台设计

  系统工作原理:由图像传感器采集到的图像信号以YUV(4:2:2)的格式输出,通过BF533的PPI接口以DMA方式存入SDRAM。当采集完一帧数据后,BF533从SDRAM中读入数据进行位图数据格式转化,将位图图像数据通过以太网接口传输到远程PC机上,然后系统继续采集下一帧图像。

  1.1 处理器

  Blackfin处理器是ADI公司与Intel公司2003年4月联合开发的体现高性能体系结构的首款第四代DSP产品,主要面向嵌入式音频、视频和通信等领域。ADSP-BF533是目前Blackfin系列数字信号处理器中性能较高的一款,具有600MHz的主频、双16位的MAC(乘加器)和两个40位的ALU(算术逻辑单元)、四个8位的视频处理单元、八个算术寄存器、10个地址寻址单元,并且集成了大量的外围设备和存储器接口,每秒运算速度最高达到1200MMAC(兆次乘法加法运算),并且ADSP-BF533在达到600MHz性能水平时的功耗仅为280mW,能耗很小。在图像处理上的优点更为突出,可针对图像特点运用二维DMA传输数据,大大加快和方便图像数据的传送和处理。ADSP-BF533系列DSP具有接口丰富,性能优良,更具有视频处理接口及独立的视频指令,特别适用于各种音视频、网络设备领域,充分满足了系统技术指标的要求,在实际中获得了广泛的应用。

  1.2 图像传感器

  美国Omnivision公司的彩色图像传感器OV7660具有30万像素,芯片的像素阵列达到1300x1280,具有高灵敏度采光、低功耗电源供电等特点且功耗低、体积小,在摄像手机、网络视频等方面应用比较广泛。通过先进的传感器技术,还可以通过减少或者消除图像瑕玷中的普通光/电资源(如固定样式噪音(FPN)、拖尾效应、闪光等)来产生比较清晰、完全、稳定的彩色图像。对于本系统来说,是一种很好的选择。

  0V7660图像传感器,内置自动曝光控制(AEC)、自动增益控制(AGC)、自动白平衡(AWB)等功能,支持SXGA、VGA、QVGA、QQVGA、CIF、QCIF和QQCIF,可输出RGB、YUV和YCbCr等多种视频数据格式。0V7660通过一个专用的Camera InteRFace接口与核心处理芯片BF533的PPI接口连接,接口电路如图1所示。

  

 

  为使芯片正常上作,需要通过串行视频控制总线(SCCB)总线来配置OV7660的内部寄存器,使芯片输出格式正确的彩色图像数据。

  1. 3 系统硬件结构

  要完成系统的功能,除了处理器和图像采集模块,通过B1ackfin533的丰富接口,在开发过程中还要用到以下模块。

  (1)SDRAM模块为系统提供内核运行、程序运行、数据缓存的空间;

  (2)FLASH模块为系统提供存储空间;

  (3)系统调试、移植、交叉编译、需要UART接口和JTAG调试接口;

  (4)图像数据的网络传输需要以太网接口。

  当然系统还应有电源模块、系统复位电路、时钟模块等,系统硬件结构如图2。

  

2 系统的软件设计

  系统的软件部分包括三部分,嵌入式uClinux(操作系统,图像传感器0V7660和网络控制器CS8911A的驱动程序,系统的应用程序。

  2.1 嵌入式uClinux操作系统

  本系统采用开源、可剪裁、安全性和实时性好的嵌入式uClinux操作系统作为软件开发平台,保证了系统的稳定性和数据的快速准确传输,并提供了完善的网络支持。uClinux并为应用程序的设计提供了众多API接口函数,方便了编程实现过程。

  嵌入式uClinux系统是由Boot Loader引导程序、系统内核、根文件系统组成。软件交叉编译环境为Windows系统下的coLinux,该操作环境具有模拟uClinux操作系统的功能,在拥有colinux环境的基础上,选择合适的开发工具可以加快开发速度,节省开发成本。软件编程语言为标准C语言,具有良好的可移植性。

  2.2 OV7660和CS8911A驱动程序

  Blackfin533 uClinux kernel中带有一些硬件驱动模块,缩短了开发周期。系统上电后,将自动检测视频设备OV7660,视频设备被检测到后,将自动调用在配置内核时已经加载到uClinux中的OV7660的驱动程序模块PPI_ov7660。

  图像数据的网络传输在Linux的平台上采用服务器/客户端模型,网络控制器CS8911A的驱动程序因为已经很成熟了并且对外公开,直接采用了开发好并已经移植到uClinux内核中的设备驱动程序。

  2.3 系统应用软件设计

  本系统的应用软件设计分为图像采集设备初始化、数据格式转化和图像的捕捉三部分。视频图像采集的程序流程图如图3。

  

 

  2.3.1 图像采集设备初始化

  对于uClinux操作系统,它将设备看作文件,因此,想对设备进行读写等操作,应首先打开设备,完成操作后再关闭设备。设备文件的初始化主要针对PPI的/dev/ppifcd设备。本系统可以从4个步骤进行。

  (1)打开视频设备 利用open()函数实现打开PPI视频设备。

  fd_ppi=open(“/dev/ppifcd”,O_RDWR)

  fd_ppi为设备文件描述符。

  (2)获取设备信息 利用相应的ioctl()函数取得设备文件的相关信息,包含设备的基本信息参数(设备名称、支持的最大最小分辨率、信号源信息等);

  ioctl(fd_ppi,CMD_PPI_GET_VIDEOIN,&video_in)

  (3)获取影像信息 利用相应的ioctl()函数取得影像支持信息,包含设备采集图像的各种属性参数(色调、亮度、饱和度、对比度、色相等);

  ioctl(fd_ppi,CMD_PPI_SET_0V7660,&pictures)

  (4)关闭视频设备利用close()函数关闭PPI视频设备。

  if(fd_ppi)close(fd_ppi);

2.3.2 数据格式的转化

  本系统开始采集摄像头数据,将数据转化为YUV420格式,在PC上显示的时候采用的是RGB565格式,因此在采集完毕之后必须进行图像数据的格式转换。

  RGB与YUV之间可以相互转化,对应关系如下:

  

 

  其反变化公式如下

  

 

  根据上述关系可以通过编程实现数据格式的转化。

  2.3.3 图像的捕捉

  在PPI_ov7660中采用直接读取的方法,直接读取方法比较简单,通过调用read()函数,将输入的图像数据复制到内核缓冲区中,就可以实现对每帧图像的读取。过程如下:

  (1)通过调用函数malloc()为采集的图像数据分配内存;

  in_buff=(unsigned char*)malloc(IMG_SIZE)

  (2)通过调用read()函数将前端采集的图像数据读到in_buf中;

  Fd=read(fd_ppi,in_buff,IMG_SIZE)

  (3)通过调用write()函数将内存中的图像数据写到创建的一个file里。

  fd=fopen(“pic”,“wb”)fwrite(in_buff,l,nOutputBytes,fd)

  3 图像的网络传输与显示

  在uClinux平台上采用服务器/客户端模型通过建立TCP套接字来实现网络的连接,本系统通过基于TCP协议的socket编程,完成了图像数据的发送和客户端的接收程序。流程图如图4所示。

  

 

  以网络上PC机为客户端,用VC编写图像显示界面。把服务端采集的图像传送至接收端,如图5所示。实验表明,系统每秒采集15帧图像,没有停顿感,满足实时性要求。

  

 

  本系统以B1ackfin533为数据处理核心,依托数字图像处理技术和DMA技术,并通过以太网与上位机通信进行数据传输,完成了一个完整的视频监测系统。其设计特点为结构简单、体积小、功耗低、图像分辨率高、成本低廉、结合网络布线。本系统满足实时行要求,具有很大的应用前景。

关键字:DSP  嵌入式  视频监测 编辑:神话 引用地址:基于DSP的嵌入式视频监测

上一篇:3D图形芯片的算法原理分析
下一篇:Ladon DSP/SOC开发平台

推荐阅读最新更新时间:2023-10-12 20:48

视野决定高度 与威盛“中国芯”共同成长
  “你好,Johny 5!”,在上海世博园威盛展馆,一个外形颇似《星际总动员》主角的机器人(300024,股吧)笑对八方来客。   与众不同是,这个世博机器人拥有一颗“中国芯”。   它采用中国自主知识产权的威盛中国芯芯片,因此可以说它是一个拥有中国智慧的机器人。而成就它的,是来自宝岛台湾的芯片企业,威盛电子。后者似乎要借世博会向世界宣布:中国人也有自己的芯片!   中国芯梦想坚守   作为全球唯一拥有x86 CPU自主知识产权的华人企业,威盛电子依靠自身努力从欧美厂商的垄断夹缝中破围而出,从而成长为全球第三大x86芯片厂商,为中国创造在IT产业制高点上争得了一席之地。而从威盛中国芯的成长历程中,不难发现
[嵌入式]
DSP和FPGA在图像传输系统中的应用和实现
视频通信是目前计算机和通信领域的一个热点。而无线扩频与有线相比,有其固有的优越性,如联网方便、费用低廉等。所以开发无线扩频实时图像传输系统有很高的实用价值。   系统设计   在短距离通信中,通常可以在收发端加入奇偶校验、累加和校验等出错重发的防噪声措施。但以上措施都只能检错,不能纠错,也就是说传输过程中不能容错。在远距离、干扰大、出错概率非常高的情况下,单纯的出错重发措施会失去工作效率和意义。因此,需要一种能容错的数据传输方式,就要对数据编码。采用扩频技术,并选取具有优良自相关特性和互相关特性的高速伪随机码对待传信号带宽进行扩展,可增强系统的抗干扰能力。在对图像数据压缩后,采用QPSK扩频调制技术。   系统的
[嵌入式]
MATLAB与DSP使用RTDX的实时数据交换
摘要:采用MATLAB辅助DSP程序的开发和调试,能加快DSP应用程序的开发。实时数据交换(RTDX)为设计、验证DSP算法提供了一个快速、方便的解决方案。本文对RTDX的工作原理进行了分析,讨论了MATLAB与DSP使用RTDX插件实现双向数据传输的实现方式,并通过一个简单的实例说明RTDX的具体实现过程。 引言 在传统的DSP(Digital Signal Processor)应用程序开发过程中,涉及的算法一般先用MATLAB语言进行仿真,仿真结果满意后,再进入产品的实现阶段。仿真实现后的算法用 C/C++或汇编语言实现,首先在硬件DSP目标板上调试,将中间结果通过DSP开发工具保存到PC机的硬盘上,然后调用到
[嵌入式]
MATLAB与<font color='red'>DSP</font>使用RTDX的实时数据交换
基于嵌入式的SoC验证效率测试方案
    随着科技的发展,系统级芯片(SoC)更高的功能集成度与更快的内部时钟速度以及复杂的高速I/O相结合,这意味着提供正常运行、并经过全面验证的系统比以前变得更难。由于通常情况下,软件团队和硬件团队各自为政,前者专注于编程模型内部的软件执行,后者则在硬件开发框架内进行调试,其中时钟周期精度、并行运行及调试数据回溯原始设计的关系是关键。但在实际环境中,无差错协同运行的情况不多,正因如此,经常会导致关键成本上升及产品开发周期延误。     为在合理的成本和时间范围内实现更高的集成度,业界必须转向新的方法:设计的洞察。本文介绍了使用嵌入式仪器调试SoC的一种方法,说明了通过整合硬件调试视图和软件调试视图,可以更快、更高效地调试整个
[电源管理]
基于<font color='red'>嵌入式</font>的SoC验证效率测试方案
ARM为核心的嵌入式语音识别电路模块设计
  服务机器人以服务为目的,因此人们需要一种更方便、更自然、更加人性化的方式与机器人交互,而不再满足于复杂的键盘和按钮操作。基于听觉的人机交互是该领域的一个重要发展方向。目前主流的语音识别技术是基于统计模式。然而,由于统计模型训练算法复杂,运算量大,一般由工控机、PC机或笔记本来完成,这无疑限制了它的运用。嵌入式语音交互已成为目前研究的热门课题。 嵌入式语音识别系统和PC机的语音识别系统相比,虽然其运算速度和内存容量有一定限制,但它具有体积小、功耗低、可靠性高、投入小、安装灵活等优点,特别适用于智能家居、机器人及消费电子等领域。   模块的核心处理单元选用ST公司的基于 ARM  Cortex-M3内核的32位处理器 STM32F
[电源管理]
ARM为核心的<font color='red'>嵌入式</font>语音识别电路模块设计
DSP 与PC 机串行通讯的设计
摘要:以TMS320F240 系列为例,简要介绍了数字信号处理器串行通信接口SCI 模块和RS485 串口通信,并编程实现了TMS320F240 与PC 机串行通信接口电路。 1 引言 DSP 既是Digital Signal Pricessing 的缩写,也是Digital Signal Pricessor 的缩写。前者是指数字信号处理的理论和方法,后者则是指用于数字信号处理的可编程微处理器。TMS320F240 系列是在TMS320F2000TM 平台下的一种定点DSP 芯片,是专为数字电机控制和其他控制应用系统而设计的16位定点运算的DSP。它集合了DSP 的高速运算功能与电机的强大控制能力,为控
[嵌入式]
<font color='red'>DSP</font> 与PC 机串行通讯的设计
π/4-DQPSK调制快速位定时捕获算法的DSP实现
    摘要: 阐述利用一种新的π/4-DQPSK调制快速位定时捕获算法进行低速率数字移动突发通信,并利用TMSC54xDSP芯片实现该算法的关键技术。实验表明,较之常规算法,该算法能够更加有效地克服多普勒频并快速实现位定时捕获。     关键词: π/4-DQPSK调制 位定时 数字信号处理器 π/4-DQPSK ( π/4 Shift Differentially Encoded Quadrature Phase Shift Keying )是在1862年由贝尔实验室P.A.Baker首先提出垢。作为一种线性窄带数字调制技术,同GMSK和TFM等恒包络调制技术相比, π/4-DQPSK 调制
[嵌入式]
普冉半导体与IAR达成合作,为嵌入式开发者带来卓越开发体验
IAR Embedded Workbench for Arm全面支持普冉半导体32位Arm® Cortex® - M0+/M4系列微控制器 中国上海–2023年10月11日– 嵌入式开发软件和服务的全球领导者IAR与普冉半导体共同宣布达成合作: IAR Embedded Workbench for Arm将全面支持普冉半导体32位Arm® Cortex® - M0+/M4系列微控制器。IAR将为普冉提供完整的开发工具支持,包括但不限于代码编辑、编译、调试等功能,使开发者能够充分发挥普冉MCU的潜力,高效快速推进项目,加速产品上市。 普冉半导体 位居行业前列,专注于提供低功耗的非易失性存储器(Flash/EEPROM)
[嵌入式]
普冉半导体与IAR达成合作,为<font color='red'>嵌入式</font>开发者带来卓越开发体验
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved