目前发展起来的高速数字信号处理器(DSP)在语音处理系统中得到了广泛应用。TMS320VC5402的TI公司生产的一种性能价格比较高的16位定点DSP。它的指令周期为10ns,具有运算速度快、通用性能、接口连接方便等特点,尤其适合在语音编码和通信中应用。
TLC320AD50C是TI公司生产的∑-Δ型A/D、D/A音频接口芯片,为V3.4调制解调器以及音频应用提供了通用的模拟接口,可以直接与TMS320VC5402相连。本文详细介绍TLC320AD50C与TMS320VC5402的硬件接口连接和软件设计。
1 TMS320VC5402的McBSP
TMS320VC5402有两个McBSP(多通道缓存串行口)。
McBSP提供了全双工的通信机制,以及双缓存的发送寄存器和三缓存的接收寄存器,允许连续的数据流传输,数据长度可以为8、12、16、20、24、32;同时还提供了A-律和μ-律压扩,多达128个通道的发送和接收。McBSP通过7个引脚使得一个数据通路和一个控制通路与外部设备相连。数据经McBSP与外设的通信通过DR和DX引脚传输,控制信号则由CLKX、CLKR、FSX、FSR等四条引脚来实现。CPU和DMA控制器可以读取DRR[1,2]的数据实现接收,并且可以对DXR[1,2]写入数据实现发送。接收和发送帧同步脉冲既可以由内部采样速率产生器产生,也可以由外部脉冲源驱动。当FSR和FSX都为输入时(FSXM=FSRM=0,外部脉冲源驱动),McBSP分别在CLKR和CLKX的下降沿检测,且DR的数据也在CLKR的下降沿进行采样。而当FSR和FSX都为输出时,则在CLKX和CLKR的上升沿进行检测。
16-bit的串行口控制寄存器SPCR[1,2]和引脚控制寄存器PCR用来配置串行口;接收控制寄存器RCR[1,2]和发送控制寄存器XCR[1,2]分别设置接收和发送的不同参数,如帧长度、每帧的数据长度等。
图1是当FSR和FSX为输出时McBsp的发送和接收时序图。另外,McBSP还可以通过(R/X)DATDLY设置接收和发送数据延迟,通过(R/X)PHASE设置接收和发送的多阶段。
2 音频模拟接口芯片TLC320AD50C
TLC320AD50C是TI生产的∑-Δ型单片音频接口芯片。它集成了16位A/D和D/A转换器,采样速率最高可达22.05kb/s,其采样速率可通过DSP编程来设置。在TLC320AD50C内部DAC之前有插值滤波器,而在ADC之后有抽样滤波器,接收和发送可以同时进行。TLC320AD50C与TMS320VC5402之间采用串行通信方式,有两种数据传输模式:16们传输模式和15+1位传输模式。若采用15+1位传输模式,其中的D0位用来表示二次通信。TLC320AD50C的数据传输时序如图2所示。
该器件采用两组模拟输入和两组模拟输出,有足够的共模抑制能力,可以工作在差分或单端方式。当模拟输出时,输出端通常接600Ω的负载。
TLC320AD50C的工作由7个控制寄存器控制。其中,控制寄存器1:软件复位以及DAC的16位或15+1位模式选择。
控制寄存器2:ADC的16位或15+1位模式选择。
控制寄存器4:选择输入和输出放大器的增益;通过选择N确定采样速率fs;选择PLL,如果选择PL(D7=0),则fs=MCLK/(128N),否则(D7=1),fs=MCLK/(512N)。其中,N=1-8。
该器件工作方式的设定和采样频率均可以由DSP编程来实现,所以TLC320AD50C使用灵活、设置容易、与TMS320VC5402的连接易于实现。
3 TMS320VC5402与TLC320AD50C硬件连接及软件实现
3.1 硬件连接
根据图1和图2的时序,则容易实现TLC320AD50C与TMS320VC5402的硬件连接,如图3所示。
TLC320AD50C的MCLK外接8.192MHz的晶振,TMS320VC5402的FSX和FSR由TLC320AD50C设置。如果选择D7=0,N=8,则采样速率为8kHz。
3.2 通信协议
TLC320AD50C的通信有两种格式:一次通信格式和二次通信格式。
一次通信格式的16位都用来传输数据。DAC的数据长度由寄存器1的D0位决定。启动和复用时,缺省值为15+1位模式,最后一位要求二次通信。如果工作在16位传输模式,则必须由FC产生二次通信请求。
二次通信格式则用来初始化和修改TLC320AD50C内部寄存器的值。在二次通信中可以通过向DIN写数据来初始化。[page]
格式如下:
系统复位后,必须通过DSP的DX口向TLC320AD50C的DIN写数据,如果采用一片TLC320AD50C,只需初始化其寄存器1、寄存器2和寄存器4。
由于通信数据长度为16位,初始化时应通过RCR1和XCR1设置McBSP的传输数据长度为16。考虑到TLC320AD50C复位后至少经过6个MCLK才可以脱离复位,故可以在此时间内初始化DSP的串行口。
3.3 软件实现
SERIAL_INIT:
LD #AIC_DP,DP *为AIC的复位初始化DP
ST #K_RESET,AIC_IN_RESET
PORTW #AIC_IN_RESET,K_AIC_ADDR *复位AIC
Need at least 6 cycles to pull the aic out of reset
STM #K_SERIAL_RETR STM #K_SERIAL_RETX STM #K_SERIAL_OUTRETR,SPCR1 STM #K_SERIAL_OUTRETX,SPXR2 *使串行口脱离复位 RSBXINTM *INTM=0,打开所有的中断 LD #0,DP ORM #(K_BRINT0 K_BXINT0),IMT *打开BRINT0和BXINT0 LD #AIC_DP,DP STM #(~K_BRINT0),IFR *清除标志 ST #K_ORESET,AIC_OUT_RESET PORTW #AIC_OUT_RESET,K_AIC_ADDR *AIC脱离复位 STM RCR1,#K_RFW 初始化接收控制寄存器1,设置接收数据长度为16位 STM XCR1,#K_XFW *初始化发送控制寄存器1,设置发送数据长度为16位 STM PCR,#K_SERIAL *设置为串行口工作方式,而不是通用I/O方式 STM #K_DATA,DXR1 *向DIN写数据,引起二次通信,等待串行口中断 IDLE 在BXINT0的中断服务程序里,向DXR1写入寄存器的值。
上一篇:基于μCOS-II的VG2以太网和USB接口设计
下一篇:PCI总线接口技术及其在高速数据采集系统中的应用
推荐阅读最新更新时间:2024-05-02 21:53