基于ATT7022A的无功补偿控制

发布者:bonbono最新更新时间:2012-05-29 来源: 电子设计工程 关键字:ATT7022A  无功补偿控制  功率因数 手机看文章 扫描二维码
随时随地手机看文章

在工业和生活用电负载中,阻感负载占有很大的比例。异步电动机、变压器、荧光灯等都是典型的阻感负载。异步电动机和变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比例。电力系统中的电抗器和架空线等也消耗一些无功功率。阻感负载必须吸收无功功率才能正常工作,这是由其本身的工作性质决定的。最合理的方法就是在这些感性设备附近及线路适当位置并联电容器组来进行无功补偿。在电力系统中,采用无功补偿的方法来提高功率因数、减少无功损耗,是改善供电质量、提高设备利用率的重要手段之一。

1 以ATT7022A为核心的无功补偿器介绍

进行无功补偿的前提是能准确地测量电网的运行状况,主要有功功率、无功功率、功率因数、谐波状况等。ATT7022A是一颗高精度三相电能专用计量芯片,适用于三相三线和三相四线应用。

它能够测量各相以及合相的有功功率、无功功率、视在功率、有功能量以及无功能量,同时还能测量各相电流、电压有效值、相角、频率等参数,充分满足电能数据采集的需求。而且提供一个SPI接口,方便与外部MCU之间进行计量参数的传递,所有的计量参数都可以通过SPI接口读出。用它能准确地采集这些参数,并且精度高,软件设计简单,内部框图如图1所示。

文中所介绍的无功补偿控制器是基于三相电能专用计量芯片ATT7022A来实现的,控制芯片为atmel公司生产的AVR单片机ATmega128和ATme ga16相比,它是AVR8位系列单片机的最高配置的一款单片机,并有53个可编程IO口,在设计液晶显示和驱动电路上比较方便。该控制器能根据ATT7022A提供的的有功功率、无功功率、功率因数来分析判断是否进行无功补偿,自动投切电容器,实现配电网的自动无功补偿,提高输电效率。

2 硬件电路设计

控制器的硬件电路设计主要有电压电流检测电路、电源电路、驱动电路、通信电路及液晶显示模块等组成,以Atmega128为控制芯片,可以轻松的完成这些控制功能。其硬件结构框图如下图所示。电网电压、电流经过互感器后,电压电流信号送到了ATT7022A上。ATT7022A提供一个SPI接口,所有的计量参数都可以通过SPI接口读出,单片机根据这些参数来判断功率因数,决定是否进行无功补偿,并把信号传送给电容投切模块。

检测电路如图,该模块主要是采集电网的电压、电流信号,电压输入UA UB UC UN,量程0~220V。电流输入IA1 IA2 IB1 IB2 IC1 IC2,量程0~5 A。ATT7022A推荐芯片电压输入脚上的采样值为0.2~0.5 V,芯片电流输入脚上采样电压为0.1 V。因此,5 A的电流信号通过5 A/2.5 mA电流互感器把5 A的电流转换成2.5 mA的电流.再经过40 Ω的电阻,输入电压为0.1 V。220 V的电压信号通过120 K的电阻,再经过2 mA/2 mA电流型电压互感器,输出电流大约为2 mA,再经过250 Ω的电阻.转换成0.5 V的电压。ATT7022内部集成了7路16位ADC,参考电压电路和所有功率、能量、有效值、功率因数及频率测量的数字信号处理等电路,并分别将实测值存放在相对应的存储空间,并通过SPI与单片机进行数据交换,无需在系统软件中进行编程得出无功功率,这样不仅节省了CPU空间,还提高了计算效率。

电源电路设计如图4所示,采用24V开关电源,它是高频逆变开关电源中的一个种类。开关电源输入为200~240VAC,输出为正24V电压,供驱动芯片MCl413使用。再用MC34063DC/DC变换器,可实现升压或降压电源变换器,把24 V的电压转换成5 V电压,Atmega128和ATT7022、液晶模块LCD所需要的电压都是+5 V。数字电路与模拟电路,一般要分开,最后一点汇集在一起,此时可以用0欧电阻相连,作用有:1)直接相连的电流通路可能很大,用0欧电阻则可以获得很窄的电流通路,能有效限制环路电流,抑制噪声。2)布线的时候,区分数字地与模拟地很麻烦,用0欧电阻分开,可以清楚的分辨数字地与模拟地。

[page]

电容投切单元。通过对ATT7022A测量出来的无功功率或功率因数分析,决定是否进行无功补偿,即投切电容器,本控制器采用晶闸管控制电容器进行投切。由于电容器两端电压不能突变,电网电压和电容器电压差值较大时,触发晶闸管会产生很大的电流冲击,为了防止在投切电容器时产生涌流,在晶闸管两端电压为零时投入,电流为零时切除,对无功功率实时动态补偿。

驱动芯片选用摩托罗拉公司生产的MC1413,它是大电流达林顿陈列反向驱动器,工作电压高,灌电流可以达到500mA,并能够在关态时承受50 V的电压。如图所示,MC1413在输入为1时,输出为0,这样三极管在电阻的分压下,发射极、基极和集电极之间形成压降,连通发射极和集电极,输出+24 V的电压,通过一个脉冲变压器,可以驱动可控硅打开,反之则关闭。

晶闸管控制电容器,每两个晶闸管连接一个电容器,图中所示为一路晶闸管输出,G1、K1分别接晶闸管的门极和阴极,控制器用两个MC1413芯片,可以控制12个晶闸管共6组,可以控制6组电容器投切。

通信模块。其电路采用单电源电平转换芯片max232,用于与上位机通信,主要用来进行电网运行参数和系统运行状态的数据传输以及系统时间的校准,并接受上位机发出的投切等操作命令。

人机接口单元。人机接口单元包括键盘输入和液晶显示两部分。键盘部分用于设定工作参数、切换显示内容和设置时钟时间,也可特殊情况下实现电容器的手动投切,键盘采用I/O口直接驱动。液晶显示功能主要显示电流、电压、有功功率、无功功率、功率因数、电容的运行状态及谐波状况等。

[page]

3 软件流程设计

采用ATT7022A计量芯片,单片机无需进行任何复杂的运算,测量数据直接提供,并且可以提供四象限功率测量参数,可准确测量到21次以上谐波。CPU不涉及A/D采样数据的处理,这使CPU的运算量大大降低,并且大大的简化了软件程序设计,使系统的运行更加可靠。

在电力传输过程中,电力系统功率因数一般大于0.95,如果功率因数小于0.95就要进行补偿。功率因数是投切的依据,若功率因数低于0.95,则投入电容器,若大于1.0,切除电容器。控制器的控制策略是根据计量芯片提供的有功功率、无功功率等参数,分析电网的功率因数是否低于0.95,电网是否过压或者欠压等,通过与设定值比较,决定电容器是分相投切还是三相同时投切,电容器投切时,采取“先投先切,先切先投”的原则,防止对一组电容器组的频繁投切,保证电容器安全,实现电网的正常运行。

4 控制器测量大电流大电压的方法

控制器的电压输入范围为0~220 V,电流的输入范围为0~5 A,所以测量大电流大电压时需要进行电压电流转换。如测量0.4 kV,500 KVA的负载时,其额定电流大约为700 A,因此可以选用电流互感器的型号为LMZJ1000/5的电流互感器,变比为200。程序中对读取的电流、有功功率、无功功率、视在功率乘以变比200,就是实测的电参数。

测量10 kV,200 A的负载,电压和电流都不能直接测量,需要加电压互感器和电流互感器,可以选用变比为100的电压互感器,变比为50电流互感器,如下图接线。程序中,对读取的电压乘以变比100,读取的电流、有功功率、无功功率、视在功率乘以变比50,就是实际的测量参数。

5 结论

以ATmega128单片机为CPU,ATT7022A为计量芯片设计的无功补偿控制器,能精确的计算出电网的无功功率、有功功率、功率因数,为实现无功功率的补偿提供了准确的数据,硬件结构简单,可靠,同时减低了对CPU的要求,精简了软件设计,同时有能保证稳定性好的特点。

该控制器只适用于低压配电网无功功率的补偿,对于测高电压大电流的方案,文中也给出了测量方法及接线图。该控制器对改善电网功率因数、降低电网损耗有良好的效果,并且设计简单,成本低,具有良好的市场前景。

关键字:ATT7022A  无功补偿控制  功率因数 引用地址:基于ATT7022A的无功补偿控制

上一篇:基于VHDL的交通灯控制器设计
下一篇:基于物联网的厂区路灯模拟控制系统

推荐阅读最新更新时间:2024-05-02 22:05

STSTM32L15232位MCU开发评估方案
    中心议题: 大功率UPS输入谐波电流抑制的方案比较     解决方案: 采用 6脉冲UPS+有源谐波滤波器 采用6脉冲UPS+5次谐波滤波器 采用移相变压器+6脉冲整流器的假12脉冲方案 采用12脉冲UPS+11次谐波滤波器     对大功率UPS来说,如果UPS整流装置为三相全控桥6脉整流器,由整流装置产生的谐波占所有谐波的近25-33%,对电网的危害较大,谐波有可造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0和正整数)、-序(3k+2次,k为0和正整数)、0序(3k次,k为正整数),
[电源管理]
STSTM32L15232位MCU开发评估方案
功率因数校正 (PFC) 预调节器中使用升压跟随器的好处
传统上,PFC(功率因数校正)离线功率转换器的设计带有两个功率级:第一个功率级通常情况下是一个升压转换器,因为此拓扑结构中有连续的输入电流,可使用乘法器以及平均电流模式控制进行改变,以获得近乎一致的功率因数 (PF)。不过,升压转换器要求有比输入更高的输出电压,同时要求一个额外的转换器将电压步降到可用水平(见图 1)。     图 1 两功率级转换器的功能结构图 传统的升压转换器有一个固定的输出电压,比最大的峰值线电压要高。尽管如此,我们也不必对它进行调节,因为步降转换器(2 功率级)可对变量进行调节。只要压升超过峰值输入电压,转换器就会进行适当调节。使用升压跟随器对线电压的变化进行跟踪响应有着许多好处,比如缩小的升压电感器尺寸
[电源管理]
在<font color='red'>功率因数</font>校正 (PFC) 预调节器中使用升压跟随器的好处
如何选择功率因数校正(PFC)拓扑?
      引言       随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正 (PFC) 功能。设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计。       由于有源PFC设计可以让设计人员以最少的精力满足高效能规范的要求,因此在近年来取得了好的发展。通过简化主功率转换段的设计和减少元件数目,包括用于通用操作的波段转换开关和若干占用电容,此设计也附带了一些优势。       拓扑选择       由于输入端存在电感,升压转换器是提供达至高功率因数的方法。此电感使输入电流整形与线路电
[电源管理]
如何选择<font color='red'>功率因数</font>校正(PFC)拓扑?
Intersil推出在宽电压范围上具有最小谐波失真和最高效率的新功率因数控制器
美国 加州、MILPITAS --- 2013年4月11日 —全球高性能模拟混合信号半导体设计和制造领导厂商Intersil公司(纳斯达克全球交易代码:ISIL)今天宣布,推出一款最新具有最小谐波失真 (THD) 和高功率因数 (PF) 校正功能的有源功率因数控制器---ISL6730A。 ISL6730A在负电容技术方面实现了一项正在申请专利的研究突破,其有助于减小EMI滤波器尺寸、改善THD和PF并在宽输入电压和输出功率范围(85VAC - 270VAC输入电压和50W - 2kW输出功率)上提供最高效率。该技术还可最小化过零失真、补偿输入滤波电容PF位移误差和使磁性元件尺寸减小多达66%。例如,在85W电源中,EMI滤波电
[电源管理]
一种空调用新型PFC的设计
  近年来,随着电子技术的发展,各种电子设备、家用电器可能产生的电流谐波和无功功率对电网的污染也越来越引起人们的重视。谐波的存在,不仅大大降低了输入电路的功率因数,而且可对公共电力系统造成污染,引发电路故障。为了抑制电网谐波,减少电流污染,国际上开始以立法的形式限制高次谐波,中国也颁布了相关的国家标准,电器产品只有符合相应的谐波标准才可以进入市场。目前采用有源功率因数校正(APFC)电路的整流器已经成为抑制谐波的主流方法。为此,本文给出了在平均电流技术控制下,以Boost型功率因数校正方式设计的新型空调用PFC设计方案。   1 功率因数校正的基本方法   功率因数校正方法可分为无源功率因数校正和有源功率因数校正。无源功率
[电源管理]
一种空调用新型PFC的设计
采用功率因数校正技术将功耗降至最低
  随着家庭和各种工作场所对消费电子和计算机用量的增加,功耗成本受到越来越多的重视。降低用户设备功耗的需求正在促使设备内外的电源实现更高的能效。   对于数百瓦到千瓦的AC-DC电源,其效率取决于功率因子校正 (PFC)和后级的DC-DC变换效率。尽管人们今天已经能较好地理解DC-DC变换器的成本和性能间的利弊权衡,但从电路和控制技术的角度来讲,PFC技术一直处于落后状态。不过,这种局面最近已经开始改变。本文将讨论该技术领域的一些发展,以及电源设计工程师如何把握各种设计观点和建议。   AC-DC变换器中的损耗   AC-DC变换器中的功率损耗一般包括:   升压二极管中的反向恢复损耗;   输入整流桥的损
[电源管理]
采用<font color='red'>功率因数</font>校正技术将功耗降至最低
新技能丨如何避免功率因数超标带来的罚款?
近年来,随着光伏发电的迅猛发展,带来了更加多元化和清洁化的电力来源,但是分布式光伏接入电网以后出现的问题也日益显现,其中就包括无功补偿的问题。   正常情况下,并网逆变器输出的无功功率小,分布式光伏系统接入厂区后,若厂区容性负载与感性负载占比较大,由于光伏发电仅提供有功功率,而负载则同时会消耗有功功率和无功功率,根据负载就近消耗原则,光伏发电提供的有功优先被消耗,导致从电网获取的有功减少,而所有无功消耗仅来自电网,对于电网考核点来说功率因数必然降低,可能造成供电系统电压波动、谐波增大等现象。   解决此类问题就需要无功补偿,那什么是无功补偿呢?   日常生活中,电网需要向容性负载与感性负载等设备提供相应的无功功率,在电网中通过无功
[新能源]
可多路独立供电的半桥DC/DC变换器的设计
    随着电力电子技术的发展,电源技术被广泛应用于各个行业。对电源的要求也各有不同。本文介绍了一种功率较大,多路输出(20路及以上)并且相互独立的开关电源。     设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节为有源功率因数校正电路、DC/DC电路、功率因数校正电路、PWM控制电路和保护电路等。采用UC3854A/B控制芯片组成功率因数校正电路来提高功率因数,用新型的芯片UC3825作为控制芯片来代替SG3525,不仅外围电路简单,而且具有有容差过压限流功能,还采用了新型IR2304作
[电源管理]
可多路独立供电的半桥DC/DC变换器的设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved