永磁同步电机电压反馈弱磁控制中电压环的分析

发布者:daits摸鱼的最新更新时间:2023-10-24 来源: elecfans关键字:永磁同步电机  电压反馈  弱磁控制  电压环 手机看文章 扫描二维码
随时随地手机看文章

1 前言

永磁同步电机的弱磁控制主要由两种方式,一种是基于前馈的,一种是基于反馈的。前馈弱磁控制使用电机的精确参数建模,生成电机运行时的电流指令。这种方法响应速度快,但是成本较高。另一种是基于电压反馈的方法。电压反馈法使用逆变器的最大容许电压作为参考值,电流环输出的定子电压给定值作为反馈值,构建电压环来调节弱磁电流指令。电压反馈法虽然响应速度没有前馈法快,但是对电机参数不敏感,容易部署。

小编认为电压反馈法响应速度慢的原因主要有两点,一是电压环控制器参数的不合适,性能不理想;二是电压环控制器有超调,需要预留较大的电压裕量。针对这两个问题,一直有文献在推动解决。本文旨在与读者分享近几年电压反馈弱磁控制中针对电压环的研究成果,希望有需要的读者可以在这些文献的基础上进行进一步的探索。由于时间和精力所限,本文并没有进行详细深入的分析,如果有任何疑问,欢迎在西莫论坛中进行讨论。


2 电压弱磁控制原理

wKgaomSGc2-APYLwAACW4ckqB-Q000.jpg

bf4a7d12-08b4-11ee-962d-dac502259ad0.png

图1 电压反馈弱磁控制框图(id)

图2是直接调节电流矢量角。转速环输出了电流矢量的幅值。电压环输出了电流矢量角。两者经过计算可以得到所需的电流给定值。

bf78e06c-08b4-11ee-962d-dac502259ad0.png  图2 电压反馈弱磁控制框图

(电流矢量角)

3 电压环的增益自适应

图1和图2中电压反馈弱磁控制法存在的问题之一就是固定参数的PI控制器无法应对不同工作点处小信号模型变化导致的非线性。本节将分析不同工作点处小信号模型的变化,并介绍增益线性化的方法[2]。

永磁同步电机的电压方程为(1)。根据电压方程,我们可以计算得到定子电压的幅值为(2)。

bfacc698-08b4-11ee-962d-dac502259ad0.png

bfd304fc-08b4-11ee-962d-dac502259ad0.png

由于角速度相对于电流变量是缓慢变化的,所以可以将定子电压幅值看作一个恒定分量加上一个由电流影响的变化分量。如

bff94b62-08b4-11ee-962d-dac502259ad0.png

在弱磁过程中,定子电压幅值始终保持最大,因此,c0194106-08b4-11ee-962d-dac502259ad0.png

对于定子电压幅值的变化分量,可以表示为     c035c948-08b4-11ee-962d-dac502259ad0.png

式中,X可以为电流矢量角β,也可以为id。取决于弱磁控制变量的类型。

以电流矢量角β为例,

c0592a3c-08b4-11ee-962d-dac502259ad0.png利用c07fe816-08b4-11ee-962d-dac502259ad0.pngc09c9f1a-08b4-11ee-962d-dac502259ad0.png,结合(1)和(2)可得

c0b50c6c-08b4-11ee-962d-dac502259ad0.png

根据(6),结合第37期研讨会中给出的弱磁区电流工作点,可以得到如图所示的电压矢量小信号模型增益图如图。

c0df9a40-08b4-11ee-962d-dac502259ad0.png

图3 不同电流矢量角对应的电压环小信号模型增益

可以看到,在不同电流矢量角(工作点)下,电压矢量和系统变量之间的小信号模型增益截然不同。说明弱磁区中电压环本身具有非常强的非线性特征。图3中有三种系统变量。其中,id的非线性最强。而β和iq的非线性稍微弱一点。当然,如果直接在电压环中使用一个PI控制器,显然是难以应对如此强的非线性的。因此,可以在电压环中增加一个增益补偿单元,从而使电压环的增益单位化,进而有利于PI控制器的部署。而式(6)中已经给出了增益的表达式。实际上,(6)可以简化为以下形式

c0fc703e-08b4-11ee-962d-dac502259ad0.png

因此,我们可以得到增益的补偿值为

c11c032c-08b4-11ee-962d-dac502259ad0.png

4 电压环的传递函数

c13a2262-08b4-11ee-962d-dac502259ad0.png

图4 电压反馈环路的结构框图

图4是电压环路的框图。通过该框图可以推导出电压环的开环传递函数Gvol。在Gvol里面,Ru是电压环的定子电压控制器。D是系统延迟。us比上β是从电流矢量角到定子电压us的传递函数。根据电压环的控制框图,电压环的开环传递函数为

c16dbc80-08b4-11ee-962d-dac502259ad0.png式中,电压环调节器

c18cd444-08b4-11ee-962d-dac502259ad0.png系统延迟

c1ae6b22-08b4-11ee-962d-dac502259ad0.png电流矢量角到定子电压的传递函数

c1cd9e48-08b4-11ee-962d-dac502259ad0.png式中,电流调节器的传递函数

c1f6d84e-08b4-11ee-962d-dac502259ad0.png电流环的传递函数

c2135fb4-08b4-11ee-962d-dac502259ad0.png永磁同步电机的电气传递函数

c236b2d4-08b4-11ee-962d-dac502259ad0.png

5 电压环传递函数的简化

上一节求取了电压环的传递函数,但是该传递函数非常复杂,无法有效指导电压环控制器参数的设计。这节会介绍电压环的简化设计方法[3,4]。

在电压环的自适应增益上,我们使用第2节的方法。但不同的是,该方法介绍的是定子电压幅值和id之间的传递函数,所以定子电压和id之间的小信号增益为

c27012b8-08b4-11ee-962d-dac502259ad0.png由于Ud主要收iq的扰动影响,所以将Ud和iq之间的关系根据(19)进行替换,得到(20)       c293c94c-08b4-11ee-962d-dac502259ad0.png在这里,需要处理iq和id之间的导数,考虑转矩不变时,iq和id之间的导数为

c2b01ec6-08b4-11ee-962d-dac502259ad0.png所以,结合(18)可得 c2db2684-08b4-11ee-962d-dac502259ad0.png将(22)中的增益置于环路之中,则电压环可以表示为图5

c300e86a-08b4-11ee-962d-dac502259ad0.png

图5 电压环的框图

图中,加入电压环的增益线性化系数。通过这种方法,id到U在每个工作点的增益都被归一化。所以,图中id到U的增益与Knorm相互抵消,电压环的开环传递函数变为

c32a079a-08b4-11ee-962d-dac502259ad0.png式中,电流环的闭环传递函数在假定电流环控制器Ri参数理想化的情况下已经被简化,α是电流环的带宽。

这样,剩下的工作就是配置电压环的PI参数,Kvp和Kvi。这里使用零极点对消的方法对传递函数进行调整。从(23)可以得到,c345b274-08b4-11ee-962d-dac502259ad0.png则电压环的开环传函变为c3687c64-08b4-11ee-962d-dac502259ad0.png从(25)可知,电压环的带宽为c38b2106-08b4-11ee-962d-dac502259ad0.png

最后的工作就是电压环的带宽的确定。由于电压环需要比转速更快的响应速度,但又由于电压环控制器输出的是id的给定值,所以电流环的响应速度应该比电压环慢。总之,电压环的带宽需要在电流环带宽和转速环带宽之间。一般的,可以取电压环带宽为电流环的一半。更具体的,包括电压裕量、电压跌落,都是在设置带宽时需要考虑的因素。这些文献[3]中进行了详细分析。


关键字:永磁同步电机  电压反馈  弱磁控制  电压环 引用地址:永磁同步电机电压反馈弱磁控制中电压环的分析

上一篇:基于电压反馈的永磁同步电机弱磁控制分析
下一篇:特定条件下转速越高电机的性能是不是越好?

推荐阅读最新更新时间:2024-11-17 03:37

400Hz逆变器电压反馈控制设计
摘要:主要介绍了Bode定理,以此为理论基础,介绍了逆变器建模,电压环反馈控制设计等。 关键词:Bode定理;Bode图;回路增益 1 控制理论基础 1.1 回路增益 对于一般负反馈控制系统,其闭环系统方框图如图1所示。闭环传递函数C(s)/R(s)=G(s)/ ,其特征方程式为F(s)=1+G(s)H(s)=0,特征方程式的根即为系统的闭环极点。由此方程式可以看出G(s)H(s)项,其包含了所有关于闭环极点的信息,一般称G(s)H(s)为回路增益。实际应用中,可通过对回路增益Bode图的分析来设计系统的补偿网络,以达到闭环系统稳定性要求。 1.2 Bode定理 Bode定理对于判定所谓最小相位系统的稳定性以及求
[应用]
基于滑膜观测器的永磁同步电机无感控制
前言 本章节采用滑膜观测器SMO进行永磁同步电机的无感控制,首先介绍了状态观测器的原理,然后分析了滑膜观测器的原理设计了传统低阶滑膜观测器,并针对传统滑膜观测器存在“抖振”的问题,对建立的传统滑膜观测器进行改进,采用电控届经典资料AN1078的滑膜观测器改进方案进行控制,最后通过Matlab/ Simulink采用传统的三段式启动方法对该方案进行仿真分析。 一、状态观测器 PMSM有感控制是通过编码器或者霍尔传感器获得电机的位置角与速度,PMSM无感控制是通过观测器来估算电机的位置角与速度。 状态观测器,即根据系统的输入输出来估计系统的状态,如下图所示: 建立用于描述真实电机的数学模型,理论上如果建立的数学模型足够精确,当
[嵌入式]
基于滑膜观测器的<font color='red'>永磁同步电机</font>无感<font color='red'>控制</font>
基于STM32F407的永磁同步电机伺服控制器设计
自20世纪90年代以来,随着现代电机技术、现代电力电子技术、微电子技术、控制理论及计算机技术等支撑技术的快速发展,交流伺服控制技术得到极大的发展,使得先前困扰着交流伺服系统的电机控制复杂、调速性能差等问题取得了突破性的进展。交流伺服系统的性能日渐提高,价格趋于合理,使得交流伺服系统取代直流伺服系统,尤其是在高精度、高性能、智能化、模块化和网络化要求的伺服控制领域成了一个发展趋势。 在伺服控制器中,为了保证伺服控制良好的实时性、准确性及灵活性,常采用专用于电机控制的DSP(DSC)或FPGA作为控制核心,这些芯片都针对电机控制做了大量的优化,如:带死区的互补型PWM,多种触发、同步方式的快速ADC,高可靠性和抗干扰性。但它们都不约
[单片机]
基于STM32F407的<font color='red'>永磁同步电机</font>伺服<font color='red'>控制</font>器设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved