基于DSP的彩色TFT-LCD数字图像显示技术研究

发布者:快乐微笑最新更新时间:2010-05-21 来源: 今日电子关键字:TFT-LCD  DSP  图像数据  图像显示  CPLD  可编程器件  FIFO  图像系统 手机看文章 扫描二维码
随时随地手机看文章

  随着计算机技术的飞速发展,嵌入式图像系统广泛应用于办公设备、制造和流程设计、医疗、监控、卫生设备、交通运输、通信、金融银行系统和各种信息家电中。所谓嵌入式图像系统,是指以图像应用为中心,以计算机技术为基础,软件、硬件可裁减,对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。嵌入式图像系统对图像显示技术提出了各种严格要求,必须选择合适的显示器,设计出合理的显示控制方法。

  系统硬件设计

  本系统要构建一个嵌入式、高速、低功耗、低成本的图像显示硬件平台,要求能真彩显示静态或动态彩色图像。为达到真彩和无拖影的显示动态图像,同时兼顾低功耗的要求,采用SHARP(夏普)公司的LQ057Q3DC02彩色TFT-LCD作为显示器;为了能达到实时图像处理和显示,采用德州仪器(TI)公司高性能DSP TMS320C6711作为主处理器;DSP与TFT-LCD之间的数据接口以及TFT-LCD的驱动控制由CPLD ispMACH4064V和高速大容量FIFO AL422B完成。系统硬件框图如图1所示。

  

  

  图1 系统硬件框图

  1 TFT-LCD驱动控制硬件设计

  由图1和图2可知,CPLD驱动控制TFT-LCD显示图像,要产生三个时钟信号:数据移位时钟(CLK)、行同步时钟(Hsync)和帧同步时钟(Vsync),并通过18位并行数据总线(R0~R5,G0~G5,B0~B5),与时钟信号同步写入待显示的图像数据(D0~D17)。

  

  

  图2 LQ057Q3DC02内部结构图

  CPLD驱动控制TFT-LCD的硬件电路如图3所示。

  2 存储器设计

  为了尽少占用CPU资源,使CPU有更多的时间进行图像采集和处理,在CPU输出图像到TFT-LCD显示器的过程中间要进行数据缓冲存储。CPU定期将数据高速输出到缓存,显示平台再根据TFT-LCD的驱动时序读出数据进行显示。CPU输出数据的速度大于显示平台的读取速度,对缓存来说是一个高速写入、慢速读出的过程。CPU以40ms为周期定期输出数据,而显示平台是连续不断的读出数据进行显示的,因此缓存的写入和读出过程是并发进行的。

  

  

  图3 CPLD驱动控制TFT-LCD硬件电路图

  本系统采用AVERLOGIC公司的基于DRAM的大容量FIFO AL422B作为高速缓冲存储器。AL422B工作电压3.3V,可承受5V信号电压,最高访问速度为50MHz,容量为384Kb,而系统要显示的图像每帧有225Kb,因此AL422B可以很好的满足高速、大容量和低成本的系统要求。AL422B没有空、半满和全满等状态标志,这个弱点给系统硬件设计和控制带来一定难度。

  [page]

  AL422B是同步FIFO,有读时钟(RCK)和写时钟(WCK)两路时钟信号。AL422B采用DRAM为存储介质,需要定时刷新片内数据。芯片自动选择频率较高的时钟信号作为DRAM的刷新时钟,要求器件工作时至少要有一路时钟信号的频率不能低于1MHz。AL422B的功能框图如图4所示。

  

  

  图4 AL422B功能框图

  3 DSP接口设计

  实时数字图像处理指的是在给定的时间间隔内对外部输入的数字图像完成指定的处理,从图像输入到处理完毕输出结果的时间延迟要小于图像数据的更新速率。若对一个每帧320×240×18位,25f/s的图像信号,其数据率为 5.5Mb/s,为达到实时性,处理器的处理速率就必须大于5.5Mb/s,即系统在40ms内完成对一帧图像的所有操作,包括图像采集、存储、传输、处理和显示等。图像采集速率由图像传感器例如CCD决定,而图像数据的存储、传输、处理和显示都是取决于CPU的性能。一般器件不能满足系统实时要求,因此本系统采用TI(美国德州仪器)公司高性能通用DSPTMS320C6711作为系统的主CPU。

  在本系统中,使用TMS320C6711的EMIF口的8位异步方式与CPLD一起定时刷新外部同步FIFOAL422B,接口电路如图5所示。

  

  

  图5 TMS320C6711与FIFOAL422B接口电路

  DSP6711为AL422B提供写复位信号(/WRST)和写使能信号(/WE)。CPLD根据DSP6711提供的外存使能信号(/CE)和写使能信号(/AWE),为AL422B提供写同步时钟(WCK)。DSP6711通过数据总线ED[5:0]将图像数据写入AL422B的内部存储单元。

  

  

  4 CPLD设计

  [page]

  本系统使用ispMACH4064V(简称4064V)作为显示平台的主控逻辑器件。4064V是一款工作在3.3V的新一带CPLD芯片,I/O口兼容5V TTL电平,主要性能参数如表1所示。

  ispMACH4064V是实现TFT-LCD、FIFO和DSP的EMIF口三个器件逻辑功能时序的核心器件,为了实现各时序之间的严格同步,使用一个外部时钟参考源输入到ispMACH4064V,ispMACH4064V内部所有的信号都是以这个时钟为基准的。

  系统总流程

  TFT-LCD彩色数字图像显示平台的三个关键器件,分别是DSP、FIFO和CPLD。DSP通过EMIF口定期将图像数据写入FIFO;CPLD并行的不断读取FIFO内的图像数据,驱动TFT-LCD显示动态或静态彩色数字图像。DSP写FIFO的速度高达25MHz,TFT-LCD刷新时钟为6MHz,CPLD读FIFO的速度应大于3倍的TFT-LCD刷新时钟,取24MHz。各器件之间的时序必须严格匹配,才能正常显示图像。本系统使用Lattice公司的CPLD ispMACH4064V,产生TFT-LCD的驱动时序和FIFO的读时序,并配合DSP的EMIF口形成FIFO的写时序。系统时序设计是数字图像显示技术的关键点,也是最困难的部分。

  系统上电后复位CPLD、FIFO和TFT-LCD,DSP定时向FIFO写入图像数据,CPLD并行的读FIFO,同时驱动TFT-LCD逐像素显示图像,系统总流程如图6所示。

  

  

  

  图6系统总流程图

  本系统采用VHDL语言对CPLD要实现的功能进行行为描述,用Synthesis软件对VHDL源代码进行语法检查和逻辑综合后,在ispLEVER3.0环境下对ispMACH4064V进行功能仿真、时序仿真、引脚I/O设置和分配,最后将生成的JEDEC文件用下载电缆写入CPLD,生成实际的数字逻辑。

  基于图像处理系统的性能分析

  图像处理完毕后,需要显示给人进行观察和评价。人的视觉系统对色彩非常敏感,图像显示的色彩必须达到或超过人的分辨能力,才不致于丢失有用的图像信息。图像处理系统的图像显示必须达到真彩(18位色)显示。为达到嵌入式数字图像处理系统实时性要求,图像显示模块要尽少占用DSP资源,同时真彩显示意味着更大的数据吞吐量,这些都要求图像显示模块要有更快的处理速度。

  本系统中,一帧图像共有320×240×3=225Kb,DSP采用8位异步模式以25Mb/s的速率向FIFOAL422B写入图像数据,写一帧图像需9ms。若DSP以40ms为间隔刷新AL422B的图像数据,就可以实现平滑动态显示真彩数字图像。这样的数据吞吐速度可以很好地满足实时性要求。

  与市场同类产品的比较:国内外市场上控制彩色TFT-LCD一般采用ARM等带TFT-LCD接口的MCU,或直接使用专用IC,甚至使用工控机来实现,这些方案都难以满足嵌入式系统对成本和功耗的要求。国内市场上,有少数几家公司采用可编程器件+存储器的技术开发出实用产品,大部分采用SRAM作为图像数据存储器。由于要进行复杂的读写端口切换,这类产品一般采用高档可编程器件,同时降低图像显示品质,无法真彩显示,无法平滑地显示动态图像。而本课题实现了18位真彩显示,每秒25帧图像,动态图像可以平滑地显示,而且成本只有40元人民币,大大提高了产品的性价比。

  结语

  本文提出了一种基于DSP的彩色TFT-LCD数字图像显示解决方案,采用高性能DSP和基于DRAM的新型大容量FIFO存储器,用CPLD实现了驱动TFT-LCD以及与DSP数据接口的所有时序。与市场上同类产品相比,本系统大大提高了图像显示品质和显示速度,降低了系统的功耗和成本,在嵌入式图像系统中有广泛的应用前景。

关键字:TFT-LCD  DSP  图像数据  图像显示  CPLD  可编程器件  FIFO  图像系统 引用地址:基于DSP的彩色TFT-LCD数字图像显示技术研究

上一篇:基于升压的负电荷泵白光LED驱动器的设计
下一篇:国内LED芯片制造商论剑“中国芯”

推荐阅读最新更新时间:2024-05-03 19:24

基于TMS320DM642的网络摄像机的设计
  随着网络技术和多媒体技术的广泛应用,数字网络视频得到了飞速发展.在网络视频会议和网络监控领域中,将传统的模拟视频信号转换成数字视频信号,并且借助于现有的IP网络进行传输已成为当今的一大热点.   从技术实现方式来讲,通常是采用网络摄像机来实现.目前市场上的网络摄像机一般有两类:一类是普通摄像机加视频网关构成,但是这种方案体积庞大、操作繁琐;另一类是把全部网络接入功能都集成在摄像机中,其体积小、功能全、易于使用和维护.后类摄像机有多种解决方案,本文提出一种基于嵌入式DSP的设计方案,并且给出具体的硬件及软件实现.   1 硬件系统设计   1.1嵌入式处理器TMS320DM642   TMS320DM642(以下
[嵌入式]
基于TMS320DM642的网络摄像机的设计
更高性能/更低功耗的异步DSP核心设计
  目前,处理器性能的主要衡量指标是时钟频率。绝大多数的集成电路 (IC) 设计都基于同步架构,而同步架构都采用全球一致的时钟。这种架构非常普及,许多人认为它也是数字电路设计的唯一途径。然而,有一种截然不同的设计技术即将走上前台:异步设计。 这一新技术的主要推动力来自硅技术的发展状况。随着硅产品的结构缩小到 90 纳米以内,降低功耗就已成为首要事务。异步设计具有功耗低、电路更可靠等优点,被看作是满足这一需要的途径。 异步技术由于诸多原因曾经备受冷落,其中最重要的是缺乏标准化的工具流。IC 设计团队面临着巨大的压力,包括快速地交付设备,使用高级编程语言和标准的事件驱动架构 (EDA) 工具,帮助实施合成、定时和验证等任务。如果异
[嵌入式]
更高性能/更低功耗的异步<font color='red'>DSP</font>核心设计
HPI在MCU和DSP接口中的应用
描述HP I接口的工作原理及C8051F060和TMS320VC5409 (简称C5409)之间的接口电路设计,给出了 HP I 接口的软件设计。该系统具有设计灵活、数据传输速度快、适用于其他含有HP I接口的DSP应用系统,为开发人员提供了一种便捷稳定的数据共享、传输方式。   1 TMS320VC5409的HPI - 8接口   C5409的HP I - 8是一个增强型8位HP I8接口,主要用来与主处理器接口。C5409 内部有32K的RAM空间,除了DSP本身可以访问该RAM区域外,主机也可以通过HP I口实现对整个RAM的访问,从而实现主机与DSP的通信。HPI - 8接口通过HP I控制寄存器HP IC、地址寄存器H
[嵌入式]
一种基于ARM+DSP的音频处理系统设计方案
1引言 随着计算机技术、电子技术和通信技术的迅猛发展,音频处理技术也在众多领域得到广泛应用。如通信领域中的手机、IP电话,消费类电子产品中的MP3和CD播放器以及控制领域中的语音识别、声控系统等 .针对 DSP 强大的数字信号处理能力和 ARM 处理器良好的实时性能,结合音频编解码芯片TLV320AIC23的接口特点,本文阐述了由三者组成的音频处理系统的硬件接口设计和软件编程,提供了有效和实用的音频处理系统方案。 TLV320AIC23(简称AIC23)是TI公司的一款高性能立体声音频编解码器Codec芯片。其内部集成的模数转换器(ADCs)和数模转换器(DACs)采用了带有过采样数字插补滤波的多位Sigma-Delta技术。数
[嵌入式]
一种基于ARM+<font color='red'>DSP</font>的音频处理<font color='red'>系统</font>设计方案
基于STM32F417微控制器的图像采集系统设计
视频图像采集处理系统广泛应用于工业控制、工业检测、医学、机器视觉等领域,并且视频通信是3G时代多媒体应用的重要部分,日常生活中所见到的数码相机、可视电话、电话会议等产品,实时图像采集是其最核心的技术。图像采集的速度与质量直接影响产品的整体效果。大多数嵌入式图像采集系统都是基于DSP、ARM技术,一些系统比较复杂、成本高、实时图像处理比较困难。本文所设计的基于STM32F417的图像采集系统具有采集图像质量无损、实时性好、功耗低、成本低等优势,适合在对信息采集的实时性和图像质量方面有较高要求的系统中应用。 1 系统硬件平台 图像采集系统主要由STM32F417微处理器、CMOS摄像头、帧缓存器、SD卡、LCD液晶屏及其他外设
[单片机]
基于STM32F417微控制器的<font color='red'>图像</font>采集<font color='red'>系统</font>设计
基于DSP和增量式PI电压环控制的逆变器研究
摘要:研究了一种基于数字控制的逆变器,该方案采用电压瞬时值环控制,以提高输出稳定性,同时兼顾输出动态性能。反馈电路中采用增量式PI法则,并对PI增量及PI输出进行限幅控制,避免因误扰动造成输出的不稳定,进一步确保系统的稳定性与动态性能。采用TMS320LF2407A来实现算法,并进行了一个输出最大值为200V,输出功率为500W的逆变器实验。 关键词:逆变器;电压环控制;增量式PI;DSP控制 引言 目前,逆变器应用最为广泛的PWM技术中,SPWM控制具有很多优点。其控制技术主要有电压瞬时值单环反馈、电流瞬时值单环反馈、电压电流双环反馈环控制及电压空间矢量控制。电压环使系统有较好的稳定性,瞬时值反馈则增强系统的动态性能。电压
[应用]
基于DSP ARM的并联有源电力滤波器控制器
简介:针对三相系统采用了一种基于直流侧电容电压控锘lJl51的APF控制算法,从瞬时有功和无功功率在系统中传递的角度出发,以调节电网输入APF的有功功率为目标,直接对输入电流进行控制,省去了检测有功和无功电流分量的繁琐过程,使检测谐波的过程变得简单。并设计了一种基于DSP和ARM的全数字并联APF控制器。 1 引言 近年来,随着电力电子设备及非线性、冲击性设备的广泛应用。在电网中产生的谐波对电网系统造成了严重的污染,因此消除电网中的谐波污染已成为电能质量研究的一个重要课题。目前普遍采用的并联型无源滤波器存在着滤波效果差,对电网参数敏感。元件体积庞大。严重时会导致串并联谐振事故等缺陷。采用现代电力电子技术、数字信号处理(DS
[单片机]
基于<font color='red'>DSP</font> ARM的并联有源电力滤波器控制器
赛灵思推出高性能3.3V CPLD汽车电子XA系列器件
赛灵思(Xilinx)推出高性能3.3V CPLD汽车电子XA系列器件——XA9500XL,该产品采用0.35μm CMOS工艺,拥有AEC-Q100器件资格。 XA9500XL系统时钟为100MHz(10ns),宏单元36到144,可用门数量为800到3200个,寄存器数量为36到144个。具有在系统中编程的功能,具备引脚锁住功能和信号路由,其FastCONNECT II开关阵列允许多种设计重复而不需要板自旋,在所有的用户和边界扫描引脚输入有滞后以降低输入信号噪音,所有用户引脚输入有总线保持电路,可用于在系统器件测试的IEEE标准1149.1边界扫描(JTAG),快速编程,单独输出的转换速率控制以降低EMI的产生。 XA95
[新品]
小广播
最新家用电子文章
换一换 更多 相关热搜器件
更多每日新闻

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 电视相关 白色家电 数字家庭 PC互联网 数码影像 维修拆解 综合资讯 其他技术 论坛

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved