反激式电源中MOSFET的钳位电路

最新更新时间:2010-09-29来源: 互联网关键字:反激式电源  钳位电路  AC/DC 手机看文章 扫描二维码
随时随地手机看文章
 输出功率100W以下的AC/DC电源通常都采用反激式拓扑结构。这种电源成本较低,使用一个控制器就能提供多路输出跟踪,因此受到设计师们的青睐,且已成为元件数少的AC/DC转换器的标准设计结构。不过,反激式电源的一个缺点是会对初级开关元件产生高应力。

  反激式拓扑结构的工作原理,是在电源导通期间将能量储存在变压器中,在关断期间再将这些能量传递到输出。反激式变压器由一个磁芯上的两个或多个耦合绕组构成,激磁能量在被传递到次级之前,一直储存在磁芯的串联气隙间。实际上,绕组之间的耦合从不会达到完美匹配,并且不是所有的能量都通过该气隙进行传递。少量的能源储存在绕组内和绕组之间,这部分能量被称为变压器漏感。开关断开后,漏感能量不会传递到次级,而是在变压器初级绕组和开关之间产生高压尖峰。此外,还会在断开的开关和初级绕组的等效电容与变压器的漏感之间,产生高频振铃(图1)。


图1:漏感产生的漏极节点开关瞬态

  如果该尖峰的峰值电压超过开关元件(通常为功率MOSFET)的击穿电压,就会导致破坏性故障。此外,漏极节点的高幅振铃还会产生大量EMI。对于输出功率在约2W以上的电源来说,可以使用钳位电路来安全耗散漏感能量,达到控制MOSFET电压尖峰的目的。

  钳位的工作原理

  钳位电路用于将MOSFET上的最大电压控制到特定值,一旦MOSFET电压达到阈值,所有额外的漏感能量都会转移到钳位电路,或者先储存起来慢慢耗散,或者重新送回主电路。钳位的一个缺点是它会耗散功率并降低效率,因此,有许多不同类型的钳位电路可供选择(图2)。有多种钳位使用齐纳二极管来降低功耗,但它们会在齐纳二极管快速导通时增加EMI的产生量。RCD钳位能够很好地平衡效率、EMI产生量和成本,因此最为常用。


图2:不同类型的钳位电路

  钳位

  RCD钳位的工作原理为:MOSFET关断后,次级二极管立即保持反向偏置,励磁电流对漏极电容充电(图3a)。当初级绕组电压达到由变压器匝数所定义的反射输出电压(VOR)时,次级二极管关断,励磁能量传递到次级。漏感能量继续对变压器和漏极电容充电,直到初级绕组电压等于箝位电容电压(图3b)。


图3:RCD钳位电路的初级侧钳位

  Vc=钳位电压

  此时,阻断二极管导通,漏感能量被转移到钳位电容(图4a)。经由电容吸收的充电电流将漏极节点峰值电压钳位到VIN(MAX)+VC(MAX)。漏感能量完全转移后,阻断二极管关断,钳位电容放电到钳位电阻,直到下一个周期开始(图4b)。通常会添加一个小电阻与阻断二极管串联,以衰减在充电周期结束时变压器电感和钳位电容之间产生的任何振荡。这一完整周期会在钳位电路中造成电压纹波(称为VDELTA),纹波幅度通过调节并联电容和电阻的大小来控制(图5)。


图4:RCD钳位的工作原理

  钳位电阻消耗漏感能量

  RCDZ钳位与RCD钳位的工作原理相同,不同点在于它通过齐纳二极管与电阻串联来分担耗散(图2)。齐纳二极管可防止电容放电至齐纳二极管阻断电压以下,这样可限制功率耗散并提升效率,特别是在轻载时非常有用。ZD钳位对由齐纳二极管的阻断电压指定的MOSFET电压提供硬钳位。RCD+Z钳位与RCD钳位的工作方式相同,所添加的齐纳二极管对瞬态条件下的MOSFET电压提供硬钳位,并且前者在正常工作条件下的EMI生成特性,也与RCD钳位相同。


图5:RCD钳位电压的基准测量

  钳位设计必须同时考虑变压器和MOSFET的特性。如果最低钳位电压低于变压器的VOR,钳位将充当一个负载,耗散的不仅仅是漏感能量。如果钳位元件过小,它们可能变得过热,无法预防危险的电压,并会产生不必要的EMI。最为重要的是,钳位必须对各种电源输入电压、负载电流和元件容差条件下的MOSFET提供保护。

  Power Integrations公司发布的《确定钳位大小的设计指南》(PI-DG-101),对反激式电源所用到的四种主要钳位电路分别提供了确定元件大小的详细步骤。该设计指南可与PI Expert设计软件配合使用。PI Expert是一款交互式程序,它可以根据设计师的电源规格自动确定关键元件(包括变压器规格),从而完成一个有效的开关电源的设计。PI Expert可自动生成钳位设计,但其结果将比《确定钳位大小的设计指南》中的以下算法所生成的稍为保守些。

  确定RCD钳位的大小

  这里介绍了设计RCD钳位时需要遵循的步骤摘要。完整的细节内容,请参阅《确定钳位大小的设计指南》。下面所提到的所有值,均非由用户测量或定义,可在PI Expert的设计结果选项卡中找到。

  1.测量变压器的初级漏感LL。

  2.检查您的设计的开关频率fs。

  3.确定正确的初级电流IP,方法如下:如果设计采用功率限制设定,则IP=ILIMITEXT;如果设计采用外部流限设定,则IP=ILIMITEXT;对于所有其他设计,IP=IILIMITMAX。

  4.确定初级MOSFET所允许的总电压,并根据以下公式计算Vmaxclamp。


  建议至少应维持低于MOSFET的BVDSS 50V的电压裕量,并另外留出30V到50V的电压裕量,以满足瞬态电压要求。

  5.确定钳位电路的电压纹波VDELTA。

  6.根据以下公式计算钳位电路的最小电压。


  7.根据以下公式计算钳位电路的平均电压Vclamp。


  8.根据以下公式计算漏感中储存的能量。


  9.根据以下公式估算钳位中的能量耗散Eclamp。


  10.根据以下公式计算钳位电阻值。


  11.钳位电阻的功率额定值应大于


  12.根据以下公式计算钳位电容值。


  13.钳位电容的电压额定值应大于1.5*Vmaxclamp。

  14.应使用快速或超快恢复二极管,将其用作钳位电路中的阻断二极管。

  15.阻断二极管的峰值反向电压应大于1.5*Vmaxclamp。

  16.阻断二极管的正向反复峰值电流额定值应大于IP;如果数据手册中未提供该参数,则平均正向电流额定值应大于:0.5*IP。

  17.根据以下公式确定阻尼电阻的大小(如使用)。


  18.阻尼电阻的功率额定值应大于


  完成初始设计后,应制作一个原型来检验电源性能,因为变压器漏感会因绕组技术的不同而有极大差异。特别是,应当测量平均电压Vclamp,并将之与步骤7中的计算结果进行比较(图5)。如有任何差异,可通过调整Rclamp值来纠正。如果测试结果与预期相差悬殊,则必须重新进行设计。

  其他钳位类型及其每个额外元件大小的确定步骤都是一样的。在选择二极管和齐纳稳压管时必须特别注意,以确保不会超过它们的功率额定值。在要求使用齐纳稳压功能的大部分设计中,应使用瞬态电压抑制器来提供所需的瞬时峰值额定功率。

  应在电源满载及最低输入电压条件下测量元件体的温度,检验其功率额定值是否正确。如有元件的工作温度超出制造商的建议温度限值,应重新调整其大小,并根据原型结果仔细*估设计。

  严格按照《确定钳位大小的设计指南》中的详细步骤进行计算,将会获得高度优化的高效钳位设计。请登录PI电源设计论坛与同行进行交流,您将会获得更多所需信息和问题答案。

关键字:反激式电源  钳位电路  AC/DC 编辑:金海 引用地址:反激式电源中MOSFET的钳位电路

上一篇:卡表在高校校园建筑节能检测系统中的运用
下一篇:安森美半导体推出GreenPoint®交互式网上设计仿真工具

推荐阅读最新更新时间:2023-10-18 15:01

几款值得推荐的医疗级AC/DC电源模块
  随着科学技术的发展,现在 医疗 电子设备的种类、数量和功能也越来越多、越来越完善,而这些设备都离不开 电源 ,因此电源的性能对产品的性能起到关键性的作用,在这些电源中分为AC/DC级电源和DC/DC级电源,其中对AC/DC级电源的选用要求很高,本文就以AC/DC级电源的选购谈一下我个人的观点,仅供使用人员参考。   由于医疗设备使用的对象是人,因此对设备的要求很高,医疗设备的正常运行与否关系到病人、医生的健康乃至生命,而电源的可靠性对设备的正常运行起到关键性的作用,因此在一些国际标准中将医疗电源和工业和科学实验类电源同时归为ISM设备,但是鉴于医疗设备对安全的要求相当严格,医疗电源设计有其特殊的规范,对要求更为苛刻的生
[电源管理]
几款值得推荐的医疗级<font color='red'>AC</font>/<font color='red'>DC</font>电源模块
反激式电源中MOSFET的钳位电路
输出功率100W以下的AC/DC电源通常都采用反激式拓扑结构。这种电源成本较低,使用一个控制器就能提供多路输出跟踪,因此受到设计师们的青睐,且已成为元件数少的AC/DC转换器的标准设计结构。不过,反激式电源的一个缺点是会对初级 开关元件 产生高应力。   反激式拓扑结构的工作原理,是在电源导通期间将能量储存在变压器中,在关断期间再将这些能量传递到输出。反激式变压器由一个磁芯上的两个或多个耦合绕组构成,激磁能量在被传递到次级之前,一直储存在磁芯的串联气隙间。实际上,绕组之间的耦合从不会达到完美匹配,并且不是所有的能量都通过该气隙进行传递。少量的能源储存在绕组内和绕组之间,这部分能量被称为变压器漏感。开关断开后,漏感能量不会传递
[电源管理]
微功率AC-DC为智能家居提供电源动力
  一、智能家居行业前景看好   2014年刚开始不久,智能家居行业就有个重磅炸弹的新闻:即北京时间1月14日,土豪谷歌宣布以32亿美元的现金,收购智能家居设备制造商Nest。消息一出,立刻被业界视为智能家居即将迎来辉煌发展的大好时机。      二、智能家居控制终端对供电电源的要求   1、超小体积   为给用户良好的视觉感受,智能家居终端的体积一般都比较小,多是呈扁平状,便于融入室内的环境中。这就对电源电路的体积提出了严格的要求:必须足够小。   2、低待机功耗   智能家居终端常年挂在市电上,且很多时候终端都处于待机状态,为节能环保,降低能量的消耗,对电源提出了功耗方面的要求:低待机功耗。   3、长时间工作的
[电源管理]
微功率<font color='red'>AC</font>-<font color='red'>DC</font>为智能家居提供电源动力
第一次设计和测试反激式电源
没有经过测试的产品往往会带给人“意外的惊喜”,而对于电源设计师而言,第一次给新设计上电时往往会有同样的顾虑。在很多情况下,设计师总会发现自己无意间损坏了元件或是发现了隐藏的设计缺陷。下文以详细的步骤介绍了安全执行此项重要任务和确保电源功能正常的操作过程。此外,还提供了一些额外信息的有用链接,可帮助您排除在设计中遇到的特定问题。 在执行本文所述的测试之前 , 您需要准备一个交流电源 供应器 及一个 自耦 变压器、一个瓦特表、至少四个万用表 ( 其中两个应具有高精度电流量程 ) 、一个带有高压探针的示波器、一个电流探针、一个电子负载和您的实际负载 。测试时间将会持续一到两个小时。最后,为预防起见,如果您的设计所采用的印刷电路板
[电源管理]
第一次设计和测试<font color='red'>反激式电源</font>
罗姆开发出业界首创搭载PFC控制功能的高效AC/DC转换器IC
日本知名半导体制造商ROHM(总部位于日本京都)面向TV和工业设备用电源等100W级别的中功率电子设备,开发出将PFC(功率因数改善)控制器与QR(准谐振)控制器一体化封装的高效AC/DC转换器IC“BM1C001F”。 本产品在PFC控制器上同时搭载ON/OFF设定功能与PFC输出新控制方式,为业界首创※。而且,还实现了轻负载时的效率提升,大幅降低了设备的待机功耗。使用此款IC的电源电路,还可满足国际标准能源之星6.0所规定的水平。不仅如此,通过将两种控制器一体化封装,可减少零部件数量,因此,还有助于进一步实现电源的小型化。 本IC已于2013年9月份开始出售样品(样品价格100日元),于2013年10月份开始投入量
[电源管理]
基于DSP 56F801的正弦波输出DC/AC电源设计方案
目前,小功率DC/AC电源在UPS以及可再生能源领域(如光伏户用电源)得到了广泛的应用。该类电源的功能是将低压直流转换为市电交流。这类电源的一种主电路结构是由高频DC/DC和DC/AC(逆变)两个环节组成。输出波形和转换效率是衡量这类产品的重要指标,而保证这些指标的关键之一是其控制器的设计。 本文介绍一个基于高性价比16位数字信号控制器DSP 56F801和脉宽调制芯片UC3846的DC/AC电源设计,该设计实现了装置中控制信号的发生和测量信号的检测,采用了电压有效值反馈加前置滤波PID调节器的数字控制和硬件与软件相结合的抗干扰措施。实验结果表明该设计的DC/AC电源的输出波形、效率和可靠性等指标均有所提高。 1 主电路工作
[嵌入式]
基于DSP 56F801的正弦波输出<font color='red'>DC</font>/<font color='red'>AC</font>电源设计方案
准谐振反激式电源架构及应用
  低成本和高可靠性是离线电源设计中两个最重要的目标。准谐振 (Quasi resonant) 设计为设计人员提供了可行的方法,以实现这两个目标。准谐振技术降低了MOSFET的开关损耗,从而提高可靠性。此外,更软的开关改善了电源的EMI特性,允许设计人员减少使用滤波器的数目,因而降低成本。本文将描述准谐振架构背后的理论及其实施,并说明这类反激式电源的使用价值。   基本知识   现有的L-C 储能电路正战略性地用于PWM电源中。结果是L-C 储能电路的谐振效应能够“软化”开关器件的转换。这种更软的转换将降低开关损耗及与硬开关转换器相关的EMI。由于谐振电路仅在相当于其它传统方波转换器的开关转换瞬间才起作用,故而有 “准谐振
[电源管理]
准谐振<font color='red'>反激式电源</font>架构及应用
基于KA1M0880的多路高效AC/DC电路
    摘要: KA1M0880是三星公司生产的一款高效、高稳定性、外围元件最少的高压PWM系列电路,它内含高压MOS场效应晶体管和完善的内部保护电路。文中描述了KA1M0880的功能及电气参数,同时分析了使用该电路做前置稳压并配合CW4862设计的多路高效AC/DC 的特点,最后结合实际使用给出了具体的电路设计图。     关键词: 前置稳压 多路AC/DC KA1M0880 CW4962 1 概述 在各种通讯装备的研制和生产过程中,对AC/DC的安全、效率、噪声、体积、重量都有严格的要求,而那些体积大、重量重、效率低的串联型AC/DC已逐渐被开关型AC/DC所取代,但由于开关型AC/
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved