基于PICFxx单片机控制的正弦波逆变电源

最新更新时间:2013-06-23来源: EDN关键字:片机控制  正弦波  逆变电源 手机看文章 扫描二维码
随时随地手机看文章

  逆变电源是一种采用电力电子技术进行电能变换的装置。随着电力电子技术的发展,逆变电源的应用越来越广泛,但应用系统对逆变电源的输出电压波形特性也随之提出了越来越高的要求,因为电源的输出波形质量直接关系到整个系统的安全和可靠性指标。

  随着数字信号处理技术的发展,以SPWM控制方式设计的逆变电源越来越受到青睐。本文介绍的SPWM逆变电源就是采用PIC单片机来实现SPWM控制和正弦波方式输出,而且电路简单,性能安全可靠,灵活性强,同时可以降低谐波,提高效率。

  1 SPWM逆变器结构

  逆变电源的拓扑结构有多种形式,图l所示是SPWM逆变电源的基本结构,它主要由变压器中心抽头推挽式升压电路、逆变电路、滤波电路、驱动电路和控制电路组成。控制电路主要包括MCU控制器、升压控制、电压检测和电流A/D检测所示等电路组成。

 

  2 SPWM逆变电源工作原理

  本逆变器电源的前级采用SG3525来交替输出两路PWM信号以控制开关管,然后经过高频变压器升压整流和LC滤波后产生400 V电压。再通过单片机编程产生等效正弦波的矩形脉冲波来控制逆变桥开关管的导通和关断。从而使其工作在SPWM控制方式。图2所示是其逆变电路的电原理图。图2中的左桥臂工作在高频调制方式,即Q1和Q3按照SPWM开通:右桥臂工作在高频调制方式,即Q2和Q4按照SPWM开通,最后经过滤波得到正弦波。

 

  3 SPWM正弦波脉宽调制方法

  SPWM正弦脉宽调制法是采用调制波为正弦波、载波为三角波的一种脉宽调制方法,可广泛应用于逆变器电源上。SPWM的输出波形控制算法有面积等效法、自然采样法、对称规则采样法、不对称规则采样法等,本文采用脉宽调制波的面积等效法来实现SPWM控制。图3所示是其SPWM波形图,该方法将半个周期的正弦波波形分成N等分,从而把该正弦波看成是由N个彼此相连的脉冲所组成,这些脉冲宽度相等(都等于π/N),幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果能把这种脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,并使矩形脉冲的中点和相应正弦等分的中点重合。且使矩形脉冲和相应的正弦部分的面积脉冲量相等,那么,就可以得到相应的脉冲序列。这样,再使各脉冲的宽度按正弦规律变化,同时使矩形波与正弦波等效,就可以实现SPWM正弦脉宽调制。

 

  4 软件设计

  4.1 正弦波脉宽的生成

  根据正弦波脉宽调制(SPWM)的产生原理,若把U=Urmsintωt正弦波在半周期内N等分,第i个等分段正弦波的面积为Si,则有:

 

  若再使矩形波的幅值等于输入正弦波的幅值Urm,并使每段矩形波的面积等于对应段的正弦波的面积,那么,便可以得到矩形波脉宽的值为:

 

  由于脉冲宽度是按照正弦波的规律变化,故可把这些脉冲宽度DK的值编制成数值表,再用单片机通过查表输出脉冲序列。实验时,可采用载波频率fc=25 kHz,交流频率fs=50 Hz,载波比N=fdfs来确定正弦波离散点的个数,即一个周期内的脉冲个数(设N=500)。为了节省表的存储空间,实际编程时,可保存半个周期内的正弦波离散点,即保存N/2个点,然后用交替的方式输出SPWM波形来控制逆变桥的工作。

        4.2 SPWM的软件实现

  本系统以PIC16FXX单片机为核心,晶振选用20 MHz,指令周期为0.2μs,SPWM波驱动开关管的工作频率为25 kHz,那么,单片机中寄存器的初始化设置如下:

  首先设置PORTC为输出模式,即TRISC=0X00。设置CCP模块为PWM功能。同时必须在CCPXCON寄存器中设置CCP模块为PWM模式,即CCPxM3:CPxM0=11XX。

  然后再通过PR2来确定PWM的开关周期寄存器,并使TSFMW=(PR2+1)×4TOSC(TMR2 PrescaleValue),fSPWM=1/TSPMW。因为工作频率f=25 kHz,故PR2=0XC7;且工作周期寄存器CCPRxL的值是可变的。

  在程序初始化完成之后,系统中的定时寄存器TMR2将启动并开始工作,此时,PWM单元的引脚输出为高电平;当TMR2>CCPRxl时,PWM单元的引脚开始输出低电平;当TMR2=PR2时,TMR2被归0,并重新开始下一个周期计数,同时PWM单元重新输出高电平。当TMR2的中断标志位TMR2IF被置高电平时,系统将执行定时中断服务程序,图4所示是其SPWM流程图。中断程序 完成查找正弦表值和A/D取样值后,再进行PI调节,即可得出修正值,并将该修正值写入CCPRxL寄存器中。图5所示是该SPWM逆变器电源的输出波形图。

 

 

  5 结束语

  试验表明,基于HC单片机控制的逆变器电源可满足小功率逆变器的要求,而且可用单片机实现数字化SPWM波的控制。本方式不但比传统的模拟控制方式具有一定的优越性,而且该逆变器电源的效率更高、体积更小,同时还具有设计灵活、性能可靠,输出稳定,谐波小等优点。

关键字:片机控制  正弦波  逆变电源 编辑:探路者 引用地址:基于PICFxx单片机控制的正弦波逆变电源

上一篇:信号链的集成与去集成
下一篇:一种集成RCC式开关电源器件设计及应用

推荐阅读最新更新时间:2023-10-17 15:46

基于ATmega8 单片控制正弦波逆变电源
  在风电行业中,经常需要在野外对风机进行维修,这时必须为各类维修工具和仪器进行供电。因此,设计一种便携式。低功耗。智能化的正弦 逆变电源 来为这些设备供电是十分必要的,可大大提高维修风机的效率。   本文正是基于这种情况下而设计的一种基于单片机的智能化正弦 逆变电源 。   1正弦 逆变电源 的设计方案   本文所设计的逆变器是一种能够将DC 12 V直流电转换成220 V正弦交流电压,并可以提供给一般电器使用的便携式电源转换器。目前,低压小功率逆变电源已经被广泛应用于工业和民用领域。特别是在交通运输。野外测控作业。机电工程修理等无法直接使用市电之处,低压小功率逆变电源便成为必备的工具之一,它只需要具有一块功率足够的电池与它连接
[电源管理]
基于ATmega8 单片<font color='red'>机</font><font color='red'>控制</font>的<font color='red'>正弦波</font><font color='red'>逆变电源</font>
30kVA逆变电源中IGBT的驱动与保护
    摘要:系统介绍30kVA逆变电源中IGBT的驱动与保护技术。提出IGBT对驱动电路的要求,介绍三菱的IGBT驱动电路M57962L和逆变电源中IGBT的过压、栅极过压、过流、过热保护措施。     关键词:IGBT驱动  保护                   Drive and Protection of IGBT at 30kVA Inverter     Abstract: Drive and protection technigue ofIGBTat30kVA inverter are introduced. Requirement of IGBT to drive circu
[电源管理]
基于DSP无差拍控制逆变电源研究
引言 随着高性能DSP控制器的出现,采用数字化控制的UPS 电源 已成为现在研究的热点。基于DSP实现的数字双闭环控制能有效提高电源系统的抗干扰能力,降低噪声,提高效率和可靠性,进一步有利于电源的智能化管理、远程维护和诊断。在逆变器的多种控制策略中,重复控制技术能有效消除非线性负载和干扰引起的波形畸变;滑模变结构控制方法能使系统运行于一种滑动模态,能保证系统的鲁棒性;模糊控制和神经网络控制等智能控制不依赖控制对象的数学模型,适应于非线性系统;无差拍控制能够瞬时控制 电压 ,对负载有很强的适应能力,有输出总谐波畸变少,损耗少等优点; PID控制简单,并具有好的可靠性;新型数字化PID控制更能取得满意的控制效果。各种控
[电源管理]
基于DSP无差拍<font color='red'>控制</font>的<font color='red'>逆变电源</font>研究
详解600W正弦波逆变器的设计与实现(二)
二、600W正弦波 逆变器 主要部件的制作和采购 1.SPWM主芯片     2.主变压器 主变压器是制作 逆变器 成功与否的关健,本机主变用的磁芯为 EE55 ,材质PC40,我在杭州电子市场买到了一种质量很好的骨架,立式的,脚位11加11,脚粗1.2MM.绕制数据:初级2T加 2T,用10根0.93的线。初级导线总面积为6.8平方MM,次级为0.93线一根,绕60T.             C),再继续绕高压绕组,绕完另外的30圈,要注意的是,这30图要和里面的30圈绕向相同,这点很关健。如果一层绕不下,就把剩下几圈再绕一层。 D),绕完高压绕组后,在外面用高温胶带包三层,就把低压绕组原先留在上面的线头折下
[电源管理]
详解600W<font color='red'>正弦波</font>逆变器的设计与实现(二)
1000W/1800W工频正弦波逆变器制作(上)
        工频逆变器的特点是:       1.在小功率时,造价高于高频机。       2.重量和体积都要比同功率的高频机大很多。       3.效率比高频机要低一点。       4.可靠性比高频机要高,不太容易坏。       5.带负载能力,特别是冲击性负载的能力,比高频机要好。       6.过载和短路保护比高频机容易做点。       因为在近20年前,做过方波的工频机,解决了当时的频繁停电时的带来的不便,所以,对工频机还是有一定的感情,现在,想做N台正弦波的工频机。方案设计时,定为24V1800W和48V3600W二种,但我现在手头没有48V的大功率电源,也不想去买4个大电
[电源管理]
1000W/1800W工频<font color='red'>正弦波</font>逆变器制作(上)
基于ADMC331的数字化逆变电源设计
 1 引言   随着信息技术的发展,逆变电源越来越广泛地被应用于通信、军事、航空、航天等领域。传统的逆变电源多为模拟控制或者模拟与数字相结合的控制系统,其可靠性差、结构复杂、成本偏高且不利于产品更新换代。现代的逆变电源正朝着全数字化、智能化及网络化的方向发展。随着高性能的数字信号处理器(DSP)的出现, 逆变电源全数字化的实现已经成为可能。本文在对ADMC331进行详细分析的基础上,介绍了ADMC331控制器在全数字化逆变电源中的具体应用。   2  ADMC331的结构特点   ADMC331是美国模拟器件公司(ADI)推出的基于DSP技术的电机控制器,它在内部集成了一个26MIPS(每秒百万条指令)的定点数字信号处理器
[电源管理]
基于ADMC331的数字化<font color='red'>逆变电源</font>设计
基于51单片的波形发生器的设计
1 引言 1.1 题目要求及分析 题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。 1.1.1 示意图 图1:系统流程示意图 1.2 设计要求 (1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。 (2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。 (3) 系统具有存储波形功能。 (4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。 (5) 系统输出波形幅度范围0~5V。 (6) 系统具有显示输出波形的类型、重复频率和幅度的功能。 2 波形发生器系统设计方
[单片机]
基于51单片<font color='red'>机</font>的波形发生器的设计
在线式不间断逆变电源装置的设计
1 前 言   在科学技术日益发展的今天,现代化的工业控制设备、通信装置及科研实施等都将以电子计算机、具有微处理器的监控设备等为核心。而这些器件是一种精密电子设备,大部分都需交流供电,且他对交流电源的供电质量、可靠性和连续性(不间断)等都有严格的要求,要求供电间断时间不得大于25%的工频周期。市电的电压波动、脉冲干扰和突然中断,将会导致随机存储器数据丢失和程序破坏,造成极坏的后果。特别是在金融、通信和电力部门等,对市电的要求更加严格。   为了解决以上问题,各种各样的不间断逆变电源(简称UPS)都相继出现。并且成为各系统必不可少的配套设备。因它具有稳压、稳频、滤波和抗干扰等功能,更重要的是在交流断电时能不间断的继续输出交流正弦波,
[电源管理]
在线式不间断<font color='red'>逆变电源</font>装置的设计
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved