关于集成运算放大器参数测试仪校准装置研究

最新更新时间:2013-06-26来源: EDN关键字:放大器  参数测试仪  校准装置 手机看文章 扫描二维码
随时随地手机看文章

       集成运算放大器(以下简称集成运放)以小尺寸、轻重量、低功耗、高可靠性等优点广泛应用于众多军用和民用电子系统,是构成智能武器装备电子系统的关键器件之一。近年来,随着微电子技术的飞速发展,集成运放无论在技术性能上还是在可靠性上都日趋完善,并在我国军用系统中被大量使用,其质量的好坏,关系到具体工程乃至国家的安危。

  随着集成运算放大器参数测试仪(以下简称运放测试仪)在国防军工和民用领域的广泛应用,其质量问题显得尤为重要。传统的运放测试仪校准方案已不能满足国防军工的要求,运放测试仪的校准问题面临严峻的挑战。因此,如何规范和提高运放测试仪的测试精度,保证军用运放器件的准确性是目前应该解决的关键问题。

  目前,国内外运放测试仪(或者模拟器件测试系统)主要存在以下几种校准方案:校准板法、标准样片法和标准参数模拟法。

  比较以上三种方案可知,前两种方法只是校准仪器内部使用的PMU单元、电流源、电压源等,并不涉及到仪器本身闭环测试电路部分,局限性很大,很难保证运放测试仪的集成运放器件参数测试精度。而标准参数模拟法直接面向测试夹具,其校准方法具有一定可行性,只是在校准精度、通用性、测试自动化程度等方面需要进一步的研究。因此,通过对标准参数模拟法加以改进,对运放测试仪进行校准,开发出集成运放参数测试仪校准装置,在参数精度和校准范围上,能满足国内大多数运放测试仪;在通用性上,能够校准使用“闭环测试原理”的仪器。

  系统性能要求

  本课题的主要任务是通过研究国内外运放测试仪的校准方法,改进实用性较强的标准参数模拟法,用指标更高的参数标准来校准运放测试仪,实现运放测试仪的自动化校准以及校准原始记录、校准证书的自动生成等。

  校准装置的硬件设计方案

  校准方案覆盖了市场上运放测试仪给出的大部分参数,其中包括输入失调电压、输入失调电流、输入偏置电流等10个参数。通过研究集成运放参数“闭环测试原理”可知:有的参数校准要用到“闭环测试回路”,有的直接接上相应的标准仪器进行测量即可实现对仪器的校准。对于用到“闭环测试回路”的几个参数而言,主要通过补偿电源装置和模拟电源装置来校准。

  1 校准电路设计

  输入失调电压VIO的定义为使输出电压为零(或者规定值)时,两输入端所加的直流补偿电压。集成运放可模拟等效为输入端有一电压存在的理想集成运算放大器。通过调节补偿电源装置给输入一个与VIO电压等量相反的电压V补,输入就可等效为V=VIO+V补=0,则被测集成运放与接口电路等效为一输入失调电压为零的理想运算放大器。然后,调节模拟电源装置,给定模拟标准运放输入失调电压参数值。通过数字多用表读数与被校运放测试仪测试值比较,计算出误差值,完成VIO参数校准。

  2 单片机控制电路设计

  单片机采用AT89S51,这是一个低功耗、高性能CMOS 8位单片机,片内含可反复擦写1000次的4kB ISP(In-system programmable) FLASH ROM。其采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,集成了通用8位中央处理器和ISP FLASH存储单元。

  本设计中,采用单片机控制信号继电器来实现电路测试状态转换,信号继电器选用的是HKE公司的HRS2H-S-DC5V,能够快速完成测试状态的转换,只需单片机5V供电电源即可,便于完成参数的校准。此外,继电器跳变由PNP三极管S8550来驱动完成。

  3 液晶显示电路设计

  智能彩色液晶显示器VK56B是上海广电集团北京分公司的产品,具有体积小、功耗低、无辅射、寿命长、超薄、防振及防爆等特点。该LCD采用工业级的CPU,机内配置有二级字库,可通过串口或三态数据总线并口接收控制命令数据,并自行对接收的命令和数据进行处理,以实时显示用户所要显示的各种曲线、图形和中西文字体。AT89S51与智能化液晶VK56B的接口电路如图3所示。单片机与LCD采用并行通信设计,LCD自身具有一个三态数据总线并口(并口为CMOS电平),可以同主机进行通信。它外部有12条线同单片机相连,即D0~D7、WRCS、BUSY、INT和GND。其中,WRCS为片选信号和写信号的逻辑或非,上升沿有效;BUSY信号为高(CMOS电平)表示忙;INT为中断申请信号,低电平有效。

  集成运放参数测试仪校准装置软件设计

  软件部分包括上位机软件和下位机软件设计。上位机软件完成PC与单片机的通信以及校准数据处理等工作;下位机软件即单片机源程序。本设计使用Keil C完成测试状态的转换、与上位机串行通信以及测试参数的实时显示等。

  1 上位机软件设计

  上位机软件主要分为三部分:参数设置部分主要完成被校运放测试仪信息录入;校准部分完成各参数的校准;数据处理部分完成校准证书及原始记录的自动化报表。“参数设置”部分主要完成被校运放测试仪的资料录入;“校准”部分主要通过下位机配合完成输入失调电压、输入失调电流等10个参数的校准过程;“生成校准证书”、“生成原始记录”、“预览校准证书”、“预览原始记录”主要实现校准数据的自动化处理。

  下位机软件主要通过Keil C进行编写,通过下位机软件完成校准参数的动态显示以及测试状态的转换等。其包括两个部分,一部分是ST7920液晶驱动程序,另外一部分是单片机串口通信程序。这里简要介绍一下VK56B液晶驱动程序的编写。其中,TW为WRCS信号的脉冲宽度,TSU为数据建立时间,TH为数据保持时间。这些参数的具体要求为:TW不小于16ns,TSU不小于12ns,T大于0ns,TH不小于5ns,TI不小于2μs。

  总线口通信子程序实现源代码如下所示。

  PSEND:

  JB PBUSY,PSEND;检测总线口忙信号

  PUSH DPH

  PUSH DPL

  MOV DPTR,#8000H;假设用户给显示器分配的地址为8000H

  MOVX @DPTR,A

  CLR P1.0;P1.0的低电平脉冲宽度不小于2μs

  NOP

  NOP

  NOP

  NOP

  NOP

  SETB P1.0

  POP DPL

  POP DPH

  RET

  校准装置开发过程中需要注意的一些问题

  ● 接口电路的器件由高分辨率、高稳定、低纹波系数电源供电,接口电路的器件偏置电源采用电池供电。

  ● 校准接口电路单元中的标准电阻采用温度系数小且准确度优于0.02%的标准电阻,然后再经加电老化进行筛选。

  ● 校准接口电路单元的辅助电路和补偿网络的制作关键是不能引入会对被校仪器产生噪声,自激振荡等的影响量。在电路板制作中,注意布线、元件排序、良好接地以及箱体的电磁屏蔽。

  ● 为保证标准参数标准不确定度,将购置国外不同型号符合要求的器件进行严格筛选作为验证用标准样片,并利用标准样片与国内性能和稳定性好的进口、国产测量(器具)系统进行比对验证。

  ● 测试用辅助样管,一定要满足表的指标规定(选用表3中输入失调电压、输入失调电流、输入偏置电流等参数允许值的辅助样片校准被检运放测试仪),否则将造成测量结果的不准确。

  校准装置不确定度来源分析

  集成运放参数测试仪校准装置的电压、电流等参数的不确定度来源,主要包括数字多用表、数字示波器、数字纳伏表的参数测量不准确,模拟校准装置和补偿校准装置给出参数的不准确,以及这些参数测量的重复性。

关键字:放大器  参数测试仪  校准装置 编辑:探路者 引用地址:关于集成运算放大器参数测试仪校准装置研究

上一篇:接触式图像传感器的信号读取与补偿技术
下一篇:包含12V buck转换器的低成本用电设备完整方案

推荐阅读最新更新时间:2023-10-17 15:46

善用放大器进行模拟IC极限性能设计优化
数十年来,微波设计人员在设计中一直运用优化方法来提高和集中电路的性能。得益于过去十年间开发出的一些新技术,现在模拟IC设计人员也能够很容易地建立并高效地在其设计上进行优化。   不同于以往的电路优化器必需主要在批模式 (batch mode)下进行单调冗长的设置和运行,这些更新颖的解决方案是专门设计用来使电路设计创建阶段的设置和交互式使用更加便捷轻松。虽然许多解决方案只包含一种算法,但有些工具现在可提供许多的优化算法和方法,可根据问题的实际情况和设计空间宽度来予以具体运用。其中许多算法是从一个用户定义初始点开始,在设计空间进行搜索寻找局部最优点。另外还有一些方法则能够搜索整个设计空间寻找全局最优点。   让我们来分析一
[模拟电子]
技术文章—为什么GaN用于D类放大器独有优势
传统的音频放大技术是一个充满挑战的领域,发烧友们对于构成家庭音频最佳设置的要素有明显不同意见。对于那些坚持使用经典放大器拓扑架构的用户,他们的要求主要集中体现在准确的音频再现方面,而几乎不考虑解决方案的整体用电效率。虽然这在家庭音频环境中完全合理,但在许多其它应用中都要求较高的放大器效率。这或许是为了节省能源,并延长电池寿命,或是为了减少散热,从而使产品更致密、更紧凑。 音频放大器有几种基本类型,包括A类、AB类和B类,它们都利用其晶体管的线性区域,并以最小失真完美地再现输入音频信号。研究表明,这种设计理论上可以实现高达80%的效率,但实际上,它们的效率约为65%或更低。在当今由电池供电的智能手机、数字增强型无绳电信(DECT
[物联网]
技术文章—为什么GaN用于D类<font color='red'>放大器</font>独有优势
附加相位噪声测试技术及注意事项
1引言 相位噪声是频率源和频率控制器件的一个重要指标。频率源相位噪声的测试是时间频率专业计量测试人员经常进行的工作,有大量文章介绍,但是频率控制器件的相位噪声即附加相位噪声的测试却很少有文章提及。本文简单介绍了相位噪声的定义,详细介绍了附加相位噪声的测试过程,给出了实际的测试结果,指出了附加相位噪声测试过程中的一些注意事项,希望对附加相位噪声测试人员有一定的借鉴意义。 2频率源相位噪声的定义 频率源的输出信号,一般可表示为: 在相位噪声测量中,实际的测试结果量并非上述定义的谱密度,而是信号调制边带功率与总信号功率之比 按照国际上早年推荐的定义和近些年美国国家标准技术研究院NIST对有关特征量的规
[测试测量]
附加相位噪声测试技术及注意事项
可程控核能谱信号放大器原理分析
引言   核能谱放大器是能谱测量系统的重要组成部分,其性能直接影响整个能谱测量系统的分辨率。本文对传统的核能谱信号放大器的不足之处进行了改进。设计研制一种通用的、放大倍数可程控的核能谱信号放大器,使其能同时适用于X荧光仪,伽玛谱仪等核能谱测量仪器,具有通用性。该放大器如进一步融合信号采集(A/D转换)技术和数字信号处理(DSP)技术可构成一个功能完备的核能谱信号处理系统。   1 电路基本组成   该电路主要包括滤波成形,程控放大,基线消除等三部分。其中滤波成形电路包括极零相消,四级巴特沃斯滤波电路,极性选择电路;程控放大电路包括一级20倍放大和12位DAC程控放大电路;基线消除电路包括去除直流电路,反相电路及电
[模拟电子]
可程控核能谱信号<font color='red'>放大器</font>原理分析
使用BTL放大器的有刷直流电机的线性电流驱动
下图是以线性电流驱动有刷直流电机的BLT放大器电路示例。 在电机和输出OUT1之间插入了用来检测电流的电阻Rs,流经电机的电流被检测为电压,并被负反馈到输入级放大器。输入级反相放大器根据该反馈对两个输出级功率放大器的输出电压进行反馈控制。输出级放大器是差分放大器,OUT1放大器使用反相输入端接收输入级放大器的输出M0,而OUT2放大器使用同相输入端接收,因此OUT2变成与OUT1相反的相位。总体而言,可以将其视为单端输入差分输出(正相/反相)放大器。 下面介绍输入电压和输出电流之间的关系。输出电流(电机驱动电流)作为检测并放大电流检测电阻Rs两端的电压差(电压降的量)的差分放大器的输出Vso,被反馈到输入级反相放大器的反相
[嵌入式]
使用BTL<font color='red'>放大器</font>的有刷直流电机的线性电流驱动
具有最优共模抑制性能的可变增益仪用放大器AD8221及其应用
摘要:目前市场上大部分仪用放大器的共模抑制比在200Hz处就开始衰减,因而难以满足某些设计要求,而美国ADI公司推出的增益可编程高性能仪用放大器AD8221,则能提供工业上最高的共模抑制比。AD8221在其增益为1时,能够在频率为10kHz处保持大于80dB的共模抑制比,因而能很好的抑制宽带干扰和线性失真。文中介绍了AD8221的主要特点、工作原理以及引脚排列和功能,同时给出了AD8221的几种应用电路的设计方法。 关键词:共模抑制比;AD8221;可变增益;仪用放大器 1 概述 很多电子系统都需要对输入模拟信号进行检测。由于在其传感器接口电路中常采用差分输入方式,因而在系统的两个输入端难免会引入共模干扰信号,且该共模干扰
[模拟电子]
900MHz、1W硅功率放大器—MAX2235
         MAX2235 为 900MHz 、 1W 硅功率放大器( PA ),利用它的输出功率自动斜率控制结构能有效降低 FSK/TDMA 系统中的瞬态噪声以及直接调制系统中的“ VCO 牵引”问题,因此 MAX2235 特别适用于双向寻呼、 AMPS 、微蜂窝 GSM 以及其它 900MHz ISM 频段的应用。      MAX2235 的工作频率范围为 800MHz ~ 1000MHz ,采用 2.7 ~ 5.5V 的单电源供电,可直接由三节 Nicd 或一节 Li+ 电池供电,当电源电压为 3.6V 时,输出功率典型值为 30bBm ( 1W );在电源电压为
[应用]
意法半导体推出超高速视频放大器
意法半导体日前推出两款新的300MHz视频驱动器IC,这两款芯片的目标应用是高端工业及医疗影像系统和高清电视的机顶盒和DVD影碟机,用于在75Ω的视频线路上推动清晰度极高的视频信号。新产品TSH340和TSH341的特性是3V-5V单电源供电,能够推动近零电压的视频信号。 TSH340是一个增益内部固定的缓冲器,其特点是占板面积小,外围组件数量少,为维持良好的线路匹配性的同时确保视频信号的电平正确,增益被设定在6dB。TSH341是一个运算放大器,其电压反馈架构与TSH340完全相同,但是可以在外部设定增益。两款芯片都采用一个0.25微米高速互补性制造工艺,带宽均高达300MHz,而静态电流仅为9.8mA。 高压摆率,
[新品]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved