一种推挽式Boost DC/DC变换器的研究

最新更新时间:2013-08-05来源: 21ic关键字:DC/DC变换器 手机看文章 扫描二维码
随时随地手机看文章
随着电力电子技术的迅速发展,双向DC/DC变换器的应用日益广泛。文章提出在双向DC/DC变换器中用到的一种推挽式Boost DC/DC变换器,全面分析这种变换器的工作原理并阐述其缺点,利用PSPICE仿真软件对其进行建模仿真。

0 引言

电力电子技术是研究电能变换原理与变换装置的综合性学科,是电力行业中广泛运用的电子技术。电力电子技术研究的内容非常广泛,包括电力半导体器件、磁性元件、电力电子电路、集成控制电路以及由上述元件、电路组成的电力变换装置,其中电力变换技术是开关电源的基础和核心。由于生产技术的不断发展,双向DC/DC变换器的应用也越来越广泛,主要有直流不停电电源系统(DC-UPS)、航空电源系统、电动汽车等车载电源系统、直流功率放大器以及蓄电池储能等应用场合。而双向DC/DC变换器中,升压变换和降压变换是双向DC/DC变换器中两个组成部分,在DC/DC升压式电路中,通常采用的拓扑结构有Boost、Buck、Boost和推挽三种。而当输入电压比较低,功率不太大的情况下,一般优先采用推挽结构。本文着重介绍一种推挽式Boost DC/DC变换器,对其工作原理进行分析并对这种变换器进行建模及仿真。

1 推挽式Boost DC/DC变换电路工作原理

推挽式Boost DC/DC变换器的拓扑结构,如图1所示,前面一级升压电路可以看作是一个Boost升压电路,通过调整开关管S1的占空比来调节变压器原边输入电压;后面一级升压电路是一个推挽式变换电路,也可以看作是由两个正激式变换器组合来实现的,该变换器是由一个具有中心抽头的变压器和两只开关管S2、S3构成的。这两个正激式变换器在工作过程中相位相反,在一个完整的周期中交替把能量传递给负载,所以称为推挽式变换。


图1 推挽式Boost DC/DC变换器

功率开关管S1、S2、S3的发射极直接连接在电源负极,因此该变换器的驱动电路继承了一般推挽式变换电路的优点:基极驱动十分方便、简单,不需要进行电气隔离就可以直接驱动。该拓扑结构具有结构紧凑、驱动电路简单以及升压效果明显等优点。

升压变换时其具体的工作过程如图2所示,高压侧开关管的驱动信号被封锁。功率开关管S1和升压电感L1构成的Boost电路将电源电压初次升高到一定的电压值;S2和S3驱动信号的占空比均为50%,构成的推挽变换电路将升高后的直流电压变换成交流电压,通过高频变压器传送到副边,并将电压进一步升高,利用反向电路中的开关管的反并二极管进行整流。

在任一时刻,电流仅仅流过一个开关器件,这大大降低了变换器的通态损耗,同时提高了变换器的效率、缩小了变换器的体积。

开关管S1、S2、S3的驱动信号,以及开关管所承受的电压波形、电感L1中的电流波形,如图2所示。


图2 升压变换时开关管上的电压、电感中的电流和变压器副边电压波形

在分析之前,假设所有的开关器件和整流二极管器件均为理想器件,变压器为理想变压器,电感L1足够大,能够保证流过它的电流的连续性。其中电容C2是为了防止电流偏磁的。

各开关状态如下:

(1)t0~t1阶段

t0时刻,S1导通,低压侧直流电压加在L1的两端,电感中的电流线性增长。此期间电源对电感充电,储存能量,为了能够保证电流的连续性,要求电感L1要足够大。这期间虽然开关管S2有触发信号,但是开关管S1的导通对L2回路形成短路,加在变压器原边的电压为零,变压器副边输出电压也为零。

(2)t1~t2阶段

t1时刻,S1关断,S2承受正向电压导通,L1中的电流将通过开关管S2流经变压器,此时变换器对负载供电,L1中的电流线性下降。

(3)t2~t3阶段

t2时刻,S1再次导通,工作过程同t0~t1阶段。

(4)t3~t4阶段

t3时刻,S1关断,S3承受正向电压导通,L1中的电流将通过开关管S3流经变压器,此时变压器对负载供电,L1中的电流线性下降。

通过分析得到如下结论:该电路采用Boost升压电路和推挽式升压电路两种升压电路相结合的方式对输入电压进行升压,大大地提升了升压的整体效率。但是其主要缺点是:电路主体部分仍然采用硬开关电路,造成的开关损耗也比较大,变换器的工作效率受到一定的限制。因此有必要对变换电路进行改进,可以将串联谐振软开关技术引入到推挽式Boost变换器中。

2 建模与仿真

为了验证上述分析,下面应用PSPICE电路仿真软件对这种推挽式Boost DC/DC变换电路进行建模仿真,观察其仿真波形。

(1)图3给出了升压变换电路的主电路的仿真图,其仿真主要参数如下:

输入直流电压:Uin=28VDC;输出直流电压:Uo=270VDC;变压器原、副边匝比:n=5;升压电感:L4=200μH;输出滤波电容:C1=200μF;开关管:

IRF460;功率二极管:MUR460。

(2)功率开关管的驱动信号设置

首先在Pspice的Schematic中绘制如图3所示的电路原理图,选用暂态分析,在给定输入激励信号的作用下,调用PspiceA/D程序进行电路的模拟仿真。


图3 升压变换电路的主电路仿真图

三个开关管的驱动信号如表1所示进行设置。

此仿真开关管的驱动信号采用脉冲信号激励源VPULSE,其主要有7个参数设置。

升压开关管的开关频率为推挽管开关频率的两倍,推挽管的开关周期为25μs。


表1 开关管驱动脉冲信号设置表

(3)仿真结果及分析

图4为升压变换电路中升压开关管和推挽开关管的驱动波形。S1为升压开关管,S2和S3为推挽功率开关管。图中S2和S3为推挽开关管的驱动波形,占空比为50%,为两个互为180°的方波。


图4 升压开关管S1和推挽管S2、S3的驱动波形

图5为变换器升压开关管的驱动波形及其升压电感中的电流波形。从图中可知,当升压开关管S1导通,低压侧的直流电压Uin加在升压电感L5的两端,所以电感中的电流线性上升,此时直流电压源对电感充电来存储能量。此时虽然推挽开关管S2驱动导通,但是S1的导通对S2的回路形成短路,加在变压器原边的电压为零。当开关管S1关断时,升压电感L5中的电流将通过开关管S2流经变压器对负载供电,此时L5中电流线性下降,依次循环。


图5 开关管S1的驱动波形及升压电感中的电流波形

图6为升压开关管S1和推挽开关管S2漏源极之间的电压波形。从图中可以看出开关管漏源极之间电压有少量振荡,这是由于变压器中存在有漏感而引起的电压峰值,这个电压峰值直接加在关断的开关管两端。


图6 S1和S2漏源极之间的电压波形

3 结束语

通过上述仿真分析,这种新型的采用Boost升压和推挽式升压相结合的升压方式,大大地提高了升压效率,但缺点是仍然采用硬开关,这样一来变换器的体积大,二是有一定的开关损耗,下一步的研究即在此基础上引入软开关技术。

关键字:DC/DC变换器 编辑:探路者 引用地址:一种推挽式Boost DC/DC变换器的研究

上一篇:简化多输出隔离DC-DC转换器设计的栅极驱动变压器
下一篇:反激式转换器简化隔离式电源设计

推荐阅读最新更新时间:2023-10-12 22:24

数字电位器在DC-DC变换器中的应用
摘要:在升压和降压DC-DC变换器中,可以用数字电位器的工作达到对输出电压进行校准和调节的目的。 关键词:数字电位器 DC-DC变换器 电压应用 1 引言 数字电位器(DCP)是数控电阻大小的器件,数控的接口方式有直接按键方式、三线接口方式(选片线、方向线、脉冲线)、SPI接口方式和I2C接口方式。通常用于校准系统精度和控制系统参数的大小。 2 脉宽调制模式 早上20世纪60年代,电源的开关调节首先应用在军用电源的设计中。它的优势在于重量轻和效率高,可以控制均衡电量的加载,就是控制均衡电压的供给,通过高速动作的开关量的开和关来实现。如图1所示,加载到电阻器上的平均电压Vo(avg)=(ton/T)%26;#215;Vi,这种控制方法
[电源管理]
基于ARM7内核LPC2119芯片实现双向DC/DC变换器的设计
为了实现直流能量的双向传输,双向DC/DC变换器被广泛应用于UPS系统、航天电源系统、电动汽车驱动及蓄电池充放电维护等场合。 在这些应用当中,很多时候都要求开关电源不仅能够控制能量的双向流动,还要能够实现低压、大电流的输出。在开关频率不太高的情况下,随着输出电压的降低、输出电流的增加,整流损耗就成了影响开关电源效率的主要冈素。因此,为了提高开关电源的效率,就必须设法降低整流损耗。而在本文中采用的同步整流技术就是一种降低整流损耗的有效手段。 在以往的电源设计当中,模拟控制技术因其动态响应快、无量化误差、价格低廉等优点而被广泛应崩;而数字控制技术则由于其成本和技术等方面的因素而较少得到应用。近年来,随着半导体技术的不断发展,数
[单片机]
基于ARM7内核LPC2119芯片实现双向<font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>变换器</font>的设计
基于航天器DC/DC变换器的可靠性设计
卫星用DC/DC变换器的高可靠和长寿命,是确保其完成飞行使命的基本条件之一。但人们对DC/DC变换器可靠性的认识通常集中在元器件固有质量或产品组装工艺缺陷方面,往往忽略了系统设计(包括技术方案和电路拓扑设计、输入/输出接口设计、环境试验条件适应性设计等)缺陷和电压、电流和温度应力对可靠性的影响。 据美国海军电子实验室的统计,整机出现故障的原因和各自的百分比如表1所示。 日本的统计资料表明,可靠性问题的80%来源于设计方面(日本把元器件的选型和质量等级的确定以及元器件的负荷能力等都归入设计上的原因)。国产星用DC/DC变换器虽然在轨试验中尚未出现失效现象的历史记录,但在地面试验中,已经有过不少的故障归零报告,基本上属于设计缺陷。
[电源管理]
基于航天器<font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>变换器</font>的可靠性设计
反激式电路拓扑的DC/DC变换器并联输出的均流变换器设计
   本文主要通过对Droop法DC/DC变换器并联均流技术的研究,设计了一种基于反激式电路拓扑的两个DC/DC变换器并联输出的均流变换器。   单端反激电路的电路拓扑及工作原理   电路拓扑        图1 反激式变换器   反激式变换器是在基本Buck-Boost变换器中插入变压器形成的,线路组成见图1所示。变压器原边绕组其实是充当一个储能电感的作用,后文将叙述到初级电感量的设计将影响到反激式变换器的工作模式。   电路工作的第一阶段是能量存储阶段,此时开关管Tr导通,原边绕组电流Ip的线性变化遵循式(1)。   (1)      电路工作的第二阶段是能量传送阶段,
[电源管理]
反激式电路拓扑的<font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>变换器</font>并联输出的均流<font color='red'>变换器</font>设计
电感式DCDC变换器工作原理
 电感降压式DC/DC变换器:电路原理框图如图所示。   图 电感降压式DC/DC变换器原理框图   图中,VIN为输入电压,VOUT为输出电压,L为储能电感,VD为续流二极管,C为滤波电容,R1、R2为分压电阻,经分压后产生误差反馈信号FB,用以稳定输出电压和调输出电压的高低。电源开关管V既可采用N沟道绝缘栅场效应管(MOSFET),也可采用P沟道场效应管,当然也可用NPN型晶体管或PNP型晶体管,实际应用中,一般采用P沟道场效应管居多。   降压式DC/DC变换器的基本工作原理是:V开关管在控制电路的控制下工作在开关状态。开关管导通时,FIN电压经开关管S、D极、储能电感L和电容C构成回路,充电电流不
[电源管理]
电感式<font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>变换器</font>工作原理
不对称半桥同步整流DC/DC变换器
摘要:简要介绍了不对称半桥同步整流变换器的工作原理,对同步整流管的驱动方式进行了比较和选择,并在分析变换器的整流损耗的基础上,总结出了影响整流损耗和变换器效率的各种参数。 关键词:不对称半桥;同步整流;损耗 引言 目前,对低压大电流输出变换器的研究已经成为重要的课题之一,如何提高这类变换器的效率是研究的重点。在传统的DC/DC变换器中,对于低的输出电压,即使采用通态电压只有0.5V的肖特基二极管作为输出的整流器件,其输出压降造成的损耗亦相当可观。同步整流技术可有效减小整流损耗,适合同步整流技术的拓扑有多种形式,其中,采用同步整流的不对称半桥变换器具有显著优势,下面将对该变换器的工作原理,同步整流驱动方式的选择以及同步整流管
[应用]
1KW 27VDC/190VDC 电流型控制反激DC/DC变换器的设计与实现
1、引言 静止变流器一般采用27VDC/190VDC/115VAC 400Hz的变换结构,前级将输入27V直流电转换为190V直流电,后级逆变环节将190V直流电变换为用电设备所需的115V/400Hz交流电。由于反激变换器具有电路拓扑简洁、输入电压范围宽、输入输出电气隔离、体积重量小等优点,因而作为静止变流器的前级电路拓扑,将会使整个静止变流器的体积重量下降,以实现更高的功率密度。 2、电流型控制反激DC/DC变换器 (1)功率电路   因为输入为低压大电流,故选用单管反激式拓扑结构,如图1所示。针对这一结构主功率开关上必需加缓冲电路,否则开关管关断时漏感能量无处释放,将会引起电压尖峰击穿功率管。常用的缓冲电路有LCD、RCD
[电源管理]
1KW 27V<font color='red'>DC</font>/190V<font color='red'>DC</font> 电流型控制反激<font color='red'>DC</font>/<font color='red'>DC</font><font color='red'>变换器</font>的设计与实现
使DC/DC变换器限流特性线性化的热敏电阻器网络
最近推出的各种集成式降压 DC/DC变换器均已采取对外接低侧MOSFET同步整流器的电压降采样的方法,无需高侧电流检测电阻器。这种拓扑节省了检测电阻器的成本和印制电路板的空间,也适当提高了电路效率。但是,MOSFET的导通电阻与温度有很大的相关性,它决定了限流大小。所幸的是,某些新型DC/DC变换器(如Maxim公司的MAX1714)可以从外部调整限流阈值。图1的电路显示如何用一只热敏电阻器对电路的输出电流限制作出温度补偿。   MAX1714 IC1第6脚的线性限流(ILIM)输入范围从0.5V至2V,对应的限流阈值分别为 50 mV 至 200mV。在默认限流设置值 100 mV 时,电路在 25℃时的限流大小为
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved