低 DCR 检测电流模式控制器比电压模式控制器有更多优势

最新更新时间:2014-06-03来源: 21IC关键字:DCR  控制器 手机看文章 扫描二维码
随时随地手机看文章

背景信息

最新一代微处理器和数字信号处理器 (DSP) 需要以更低的工作电压提供更大的电流,因此使电流检测元件的电阻尽可能小以最大限度地降低电源传导损耗变得更加重要。然而,低电阻电流检测元件产生的斜坡电压较低,这在使用电流模式控制器时,不利于稳定运行。低斜坡电压导致采用电流模式控制方法的开关电源有显著抖动,在很多应用中,开关电源可能变得不稳定。因此,通常由电压模式控制器取而代之,尽管电压模式控制器也有不足之处,并可能出现可靠性问题。

尽管如此,采用电流模式控制方法的开关电源与电压模式控制器相比仍有以下几项优势:

1. 可靠性更高,快速、逐周期电流检测适用于输出短路和过载保护。采用电压模式控制方法的电源对过流情况的响应较慢,在有些应用中可能导致故障。

2. 简单和可靠的反馈环路补偿,电源全部采用陶瓷输出电容器也可以稳定,有助于组成尺寸更小的解决方案。

3. 在大电流多相设计中易于实现准确的均流。

4. 更快的瞬态响应。

不过,就大电流输出 (一般高于 10A) 而言,DCR 很小的电感器不能产生足够高的电压斜坡信号,不能使电流模式控制器在所有工作条件下都稳定。因此,电压模式控制器一直使用到现在!

凌力尔特最新推出的 LTC3774 是一款电流模式双输出 DC/DC 降压型控制器,该器件能够检测非常低的斜坡电压,并保持卓越的稳定性。这款控制器提供真正的电流模式控制,可与 DC 电阻低于 1mΩ 的电感器一起使用,并仍然保持稳定性。过去,当采用电流模式控制方式时,电感器的 DCR 必须远高于 1mΩ。由于电感器中的功耗,所以这种较高的 DCR 限制了最大输出电流,其一般情况下低于 10A。

低 DCR 检测电流模式控制器

LTC3774 是一款电流模式双输出同步降压型 DC/DC 控制器,通过提高电流检测信号,允许使用 DC 电阻 (DCR) 非常小的功率电感器。可以使用 DCR 低至 0.2mΩ 的功率电感器,以在大电流应用中,最大限度地提高转换器效率,使其高达 95%,并提高功率密度,降低输出纹波电压。这种全新 DCR 检测方法还能降低通常与小 DCR 电阻应用有关的开关抖动。DCR 温度补偿在很宽的温度范围内保持恒定和准确的限流门限。

LTC3774 与 Power Block、DrMOS 等外部功率链器件以及分立式 N 沟道 MOSFET 和有关的栅极驱动器一起使用,允许灵活的设计配置。LTC3774 在 4.5V 至 38V 输入电压范围内工作,产生 0.6V 至 3.5V 的固定输出电压。可以并联的相位多达 12 个,而且可以采用不同相的时钟,以最大限度地降低输入和输出滤波要求,满足非常高的电流要求 (高达 360A)。

LTC3774 提供 200kHz 至 1.2MHz 可选固定工作频率,也可同步至一个外部时钟。双差分放大器对两个输出电压提供真正的远端输出电压检测。其可调电流限制可配置为适合非常低的 10mV 至 30mV 检测电压,以最大限度降低功耗。

典型应用

为在 DCR 值非常低的情况下使用,LTC3774 运用了全新方法进行设计和优化,以将检测信号的噪声灵敏度降低 14dB。DCR 检测正变得日益流行,因为这种方法不使用昂贵的电流检测电阻器,而且能效更高,尤其是在大电流应用中。然而,随着 DCR 值降至低于 1mΩ,信噪比会变得很低,电流检测难以进行。LTC3774 采用专有方法解决了这个问题。大体上,外部元件选择由负载要求主导,从选择 DCR 和电感器值开始。接下来选择功率 MOSFET,最后选择输入和输出电容器。

在图 1 所示的原理图中,LTC3774 与作为功率链器件的 DrMOS 一起使用。DrMOS 包括功率 MOSFET 和栅极驱动器,这可以简化电路、减轻热设计负担并有助于构成更紧凑的解决方案。这个电路以标称 12V 输入工作,在电流高达 60A 时产生 1.5V 输出。使用一个 DCR = 0.32mΩ 的电感器以最大限度地将效率提高到 90% 以上,如图 2 所示。


图 1:LTC3774 典型应用原理图 (12VIN 至 1.5VOUT/60A)

 

图 2:图 1 所示的 LTC3774 电路中每相之效率曲线

在低负载电流时,LTC3774 可以进入高效率突发模式 (Burst Mode®)、恒定频率脉冲跳跃模式或强制连续传导模式。当配置为突发模式工作并在轻负载情况下,转换器将突发产生几个脉冲,以保持输出电容器上的充电电压。然后关断转换器,进入休眠模式,这时大多数内部电路都关断。输出电容器提供负载电流,当输出电容器上的电压降至所设定的值时,转换器重新启动,从而提供更大的电流以补充充电电压。这种方式显著地提高了轻负载效率。

LTC3774 采用恒定频率峰值电流模式控制架构。这种架构在电源相位之间保证逐周期峰值电流限制和均流。该器件独特的架构提高了电流检测电路的信噪比,因此尤其适用于低电压、大电流电源。信噪比的提高可以最大限度地降低开关噪声引起的抖动,这种抖动可能引起信号错误。与标准电流模式控制器相比,该器件可将最严重的开关抖动降低 60%。

此外,LTC3774 包括两个电流检测引脚 (SNSD+ 和 SNSA+),以采集并在内部处理斜坡信号,针对低压检测信号提供 14dB 信噪比改进。限流门限是电感器峰值电流及其 DCR 值的函数,可以在 10mV 至 30mV 内以 5mV 步进准确设定。在整个温度范围内,器件至器件的限流误差仅为 1mV,从而确保卓越的准确度。

在需要电感器 DCR 值或检测电阻器较大的应用中,通过将 SNSD+ 引脚短接至地来禁止该引脚,LTC3774 可以像任何典型电流模式控制器一样配置。RC 滤波器可用来检测输出电感器信号。如果使用 RC 滤波器,那么其时间常数 R • C 可设定为等于输出电感器的 L/DCR。在这类应用中,电流限制通常是规定电流检测值的 5 倍。

快速瞬态响应

图 3 显示的是,用图 1 所示电路测试时,15A 至 30A 阶跃负载的输出电压瞬态响应。输出电压在不到 50µs 时间内恢复,与标称电压的最大偏差仅为 75mV。

 

图 3:LTC3774 在 15A 至 30A 阶跃负载时的瞬态响应

结论

LTC3774 允许使用 DCR 值非常低的电流检测元件,以在大电流应用中提高效率。其电流模式控制方式与电压模式控制器相比有很多优势,包括高可靠性、快速逐周期电流检测、简单的反馈环路补偿、快速瞬态响应和允许使用全陶瓷电容器以设计尺寸最小的解决方案。LTC3774 非常适用于需要高效率和高可靠性的低压、大电流降压型转换器应用。LTC3774 是负载点计算机和电信系统、工业和医疗仪器、以及 DC 配电系统的理想选择。最终,电源设计师可拥有一个采用最佳电流和电压模式控制方法的控制器了。

关键字:DCR  控制器 编辑:探路者 引用地址:低 DCR 检测电流模式控制器比电压模式控制器有更多优势

上一篇:基于TL431的并联扩流稳压电路的设计方案
下一篇:基于ARM7系列芯片嵌入式平台上实现的设计方案

推荐阅读最新更新时间:2023-10-12 22:40

三路输出、降压 / 降压 / 升压型同步 DC/DC 控制器
Analog Devices, Inc. (ADI) 宣布推出 Power by Linear™ 的 LTC7815,该器件是一款高频 (高达 2.25MHz) 三路输出 (降压、降压、升压)、同步 DC/DC 控制器,可在汽车冷车发动情况下将所有输出电压保持在稳压状态。12V 汽车电池在引擎重新起动或冷车发动期间会降至低于 4V,因而导致信息娱乐系统和其他依靠 5V 或更高电压供电工作的电子产品发生复位。高效率同步升压型转换器给两个降压型转换器馈电,可在汽车电池电压下降时避免出现输出电压压差,在怠速时关闭引擎以节省燃料的汽车启 / 停系统中,这是一个有用的特性。或者,降压型控制器也可以从一个通用型三路输出控制器的输入供电。
[汽车电子]
串行通信控制器85C30及其应用
摘要:85C30是美国AMD公司生产的高性能双通道串并转换通信控制器,它支持多种通信协议,可用于各种多串口通信应用领域,文中介绍了85C30的特性、结构和功能,给出了85C30在异步通信中的应用方法。 关键词:串行通信控制器 85C30 异步通信 1 概述 85C30是AMD公司生产的双通道、全双工、支持多种通信协议的通信控制芯片,该芯片自身带有串并、并串转换功能,可广泛应用于微控制器组成的多串口串行通信应用系统中。其内部集成了波特率生成器、数字锁相环和晶体振荡器等可编程器件,因而可大大减少对外围电路的需要,提高了系统的可靠性,更适用于高速通信应用领域。 85C30的主要特性如下: ● 具有两个可全双工工作的通
[应用]
LCoS彩色时序控制器的ASIC设计
摘要:本文介绍了LCoS彩色时序控制器的原理和实现方法,采用全定制设计技术进行了该控制器电路的ASIC芯片设计,该芯片功能正确,功耗较低,可靠性强。 引言 基于头盔显示器对便携性的要求,要实现微型化和低功耗,将彩色时序控制器设计为单片的ASIC是较好的解决方案。本文正是针对应用LCoS(Liquid Crystal on Silicon)微型显示器的HMD,进行其中彩色时序控制器的ASIC设计。    彩色时序原理 彩色时序方法的原理是:首先把每场图像中的红绿蓝信息分离出来,然后在每一场的时间内分3个子场分别把红绿蓝图像写入显示屏,在每个子场的扫描过程结束以及液晶反应之后依次点亮红绿蓝3色光源,从而在一场的时间
[应用]
Vlper12A开关电源芯片在家用洗碗机控制器的应用
引言 随着电子技术的发展,家电控制器的小型化、轻便化和低成本要求使得电源也朝着轻便、小薄、以及高效的方向发展。虽然传统的线性电源技术技术现在已经比较成熟,也具有大量集成化的线性稳压电源模块,而且稳定性能好、输出纹波电压小、使用可靠。但是,其通常需要体积大且笨重的工频变压器和隔离单元,而且滤波器的体积和重量也很大,因而其电源效率很低,一般只有45%左右,很难满足电子设备发展的要求。而开关电源由于不需要沉重的电源变压器,且具有体积小、重量轻、输入电压范围宽、效率高的优点,同时,随着开关电源的日趋高频化,其体积也更加小巧,因此,开关电源在家电产品的应用前景也更加广阔。 1开关电源的工作原理 开关型稳压电源通常采用功率半导体器件作为开关,
[电源管理]
Vlper12A开关电源芯片在家用洗碗机<font color='red'>控制器</font>的应用
基于MCU的汽车方向盘按键控制器系统设计
随着汽车在人们日常生活中的普及以及汽车电子在汽车应用领域价值不断地扩大,越来越多的舒适性能和“智能”应用被集成进车身电子的领域。飞思卡尔最新的汽车级8位微控制器MC9S08SC4便是本文所要介绍的主角,该款微控制器是业界使用广泛的飞思卡尔HCS08系列汽车级微控制器家族最新的成员,以其低成本、小封装但同时兼具高性能、高可靠性的特点,适用于众多汽车电子应用领域,例如:简单的灯光控制、按键控制、HVAC、LIN通信控制器、车内后视镜调光以及简单的继电器和马达控制。如果你正在为你的应用物色一颗高性能、低成本的汽车级微控制器,但又为电子模块成本和PCB面积的限制而苦恼,相信MC9S08SC4正是你要找的这颗芯片。 MC9S08SC4
[单片机]
基于MCU的汽车方向盘按键<font color='red'>控制器</font>系统设计
尽量减少短路电流脉冲的热插拔控制器-Minimize
Abstract: Because of internal circuit-breaker delay and limited MOS-gate pulldown current, many hot-swap controllers do not limit current during the first 10µs to 50µs following a shorted output. The result can be a brief flow of several hundred amperes. A simple external circuit counters this problem by minimizing the
[电源管理]
尽量减少短路电流脉冲的热插拔<font color='red'>控制器</font>-Minimize
一美元DSP微控制器乃数字电源普及起爆剂
  数字软件技术开始在此前曾是模拟技术一统天下的开关电源上广泛普及。LED照明、车载电源及产业设备等领域也纷纷开始导入数字控制型电源。通过添加通信功能或者将控制方式改变为动态控制等方法,在提高电源效率、缩小产品尺寸以及缩短开发时间等方面发挥了效果。长期以来一直是DSP课题的高成本问题,也随着价格与通用微控制器一样的低价产品问世而逐渐得到解决。   电源的数字控制有助于实现AC-DC电源和DC-DC转换器等的小型化及高效率化,大约5年前开始受到关注。这种“数字电源”的应用范围在最近一年来悄然扩大。   以前,数字电源只是导入于无停电电源装置(UPS)、通信产品、服务器以及太阳能电池用功率调节器等基础设施的部分产品中。但最近,LED
[电源管理]
一美元DSP微<font color='red'>控制器</font>乃数字电源普及起爆剂
ECU及控制器的搭载位置
微控制器 微控制器的基本构成 车载ECU中的微控制器虽然是用于车载,但其基本构成与普通的微控制器相同。为了应对近年来的法规制度,ROM(ReadOnlyMemory,只读存储器)逐渐改变为闪存类型,可更改ROM内以模块单位记忆的内容。时序控制器是与时间及时刻相关的控制装置。设定时刻与内部时序(计时器的数值)一致时,具有使既定输出改变的匹配功能、记忆外部信号的边缘输入时刻的捕获功能。匹配功能用于确定喷油信号输出正时等。 捕捉功能与中断控制器配合,用于检测发动机转速信号输出等。通信接口是与ECU内部的输入/输出扩展IC及其他ECU进行通信的装置。近年,为了应对车内LAN(LocalAreaNetwork,局域网),内置CAN功
[嵌入式]
ECU及<font color='red'>控制器</font>的搭载位置
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved