如何利用LLC谐振电路改进光伏并网逆变器

最新更新时间:2014-07-27来源: 电子信息网 关键字:LLC  谐振电路 手机看文章 扫描二维码
随时随地手机看文章

光伏发电系统是利用电子组件将太阳能转化为电能,逆变器作为整个系统的核心,通常又分为隔离型和非隔离型两大类,如果将两种类型的逆变器优点结合,对整个光伏发电系统的效率、可靠性、使用寿命的提高以及降低成本都是至关重要的。

本文主要介绍一种利用LLC谐振电路进行高频光伏并网逆变器设计,将隔离型和非隔离型的优点结合,既减轻了重量、缩小了体积、降低了成本,又提高了电能质量和安全性。而且由于使用LLC谐振电路能够实现DC-DC级功率器件的软开关,可以大大降低功率器件的开关损耗,因此能显着提高整个系统的转换效率和器件的使用寿命。

光伏并网逆变器结构及基本原理

系统设计结构

采用LLC隔离的光伏并网逆变器结构如图1所示,它包括DC-DC直流升压级和DC-AC逆变级两级结构,前级负责对太阳能电池阵列传送过来的直流电进行升压和最大功率跟踪,后级负责对前级传送过来的直流电进行逆变,最后经过滤波电路后进行并网。


工作原理

光伏并网逆变器通过使功率器件有规律的开通、关断来控制电能的传输,功率器件的开通关断采用脉冲宽度调制(PWM)方式来控制。太阳能电池产生的直流电首先送给DC-DC电路,DC-DC级执行最大功率点跟踪(MPPT)算法,使太阳能电池始终工作在最大功率点。

经过最大功率点跟踪控制后DC-DC电路将太阳能电池的电能进行升压变成适合DC-AC级的直流电,然后送到DC-AC级将直流电变换成交流电。控制器对采样电路采取的电网电压或电流相位进行跟踪计算,然后通过调节DC-DC级功率器件开关使逆变器的输出电流与电网电压同频同相,最后通过输出滤波电路或隔离变压器将电能输送到电网。本文DC-DC级输入200~300 V,输出400 V直流电压,输出功率500 W,满载时功率因数不低于94%.DC-AC级输入直流电压400 V,功率等级600 W,功率因数为1.


LLC电路分析

本文采用LLC谐振电路代替工频变压器进行隔离,这是跟传统光伏并网逆变器所不同的地方,也是其优点所在。传统工频隔离变压器体积大、笨重、成本高,采用LLC谐振电路进行隔离可以大大缩小逆变系统的体积,提高效率和功率密度。LLC谐振电路是在传统的串联谐振电路基础上,将变压器励磁电感Lm串联在谐振回路中,构成一个LLC谐振电路。相比传统的串联谐振电路,由于增加了一个谐振电感,使得电路谐振频率降低,无需使用额外辅助网络就可以实现全负载范围内的开关管零电压开关;其次,变压器副边整流二极管可以有条件的工作在零电压关断,减小了二极管反向恢复所产生的损耗;而且其适合工作在宽的电压输入范围下,输入电压越高,效率越高,在工作点最优时可获得97%的转换效率

本文采用了一个半桥LLC串联谐振电路,如图2所示。半桥LLC串联谐振电路包含输入电容C1、C2,MOSFET Q1、Q2,谐振电感Lr,谐振电容Cr,变压器T1,输出整流二极管D1 ~ D4和输出电容C3。

由于增加了一个谐振电感,LLC谐振电路具有两个谐振频率,一个是谐振电感Lr和谐振电容Cr的谐振频率fr,另一个是Lm加上Lr与Cr的谐振频率fm。计算公式如下:



在串联谐振电路中,工作频率fs高于fr时才能保证开关管工作在ZVS状态,而在LLC电路中,只要保证fs高于fm就能实现开关管的ZVS.下面对它的工作过程进行简单分析。



LLC电路根据开关频率范围可以分为四种模式,本文只讨论fr》fs》fm模式下的工作原理,一个开关周期内整个工作过程如下所述,工作波形如图3所示,PS1,PS2分别为Q1,Q2的驱动脉冲波形:

[t0 - t1]阶段:t0时刻谐振电流为负,Q1体二极管导通,Q1两端电压钳位在0,此时让Q1导通为零电压导通。能量从电源正极流向C1,C2中点,Lr,Cr谐振,谐振电流ILr经过开关管Q1并以正弦形式逐渐上升,流过变压器原边的电流IT1为谐振电流ILr与励磁电流ILm之差,变压器原边电压极性上正下负,副边极性也为上正下负,因此D1、D4自然导通,变压器原边电压被钳位在nVo(n为变压器变比),励磁电流线性上升。



经过半个周期谐165现代电子技术2013年第36卷振时Q1仍处于导通状态。半个周期之后谐振电流开始减小,励磁电流继续线性上升,t1时刻谐振电流与励磁电流相等。

[t1 - t2]阶段:t1时刻谐振电流ILr等于励磁电流ILm,变压器原边电压为0,副边电压也为0,副边整流二极管全部截止,原边不再向副边提供能量,励磁电感Lm开始参与谐振。由于Lm要比Lr大很多,LLC谐振周期明显变长,所以谐振电流基本不变。t2时刻Q1关断。

[t2 - t3]阶段:t2时刻Q1关断,此时Q2也处于关断状态,电路进入死区时间。谐振电流ILr对Q2的结电容放电,当它的电压降到0时,体二极管导通,变压器原边绕组极性变为上负下正,副边整流二极管D2、D3自然导通,励磁电感Lm电压被输出电压钳位,不再参与谐振。谐振电流开始以2πLrCr为周期程正弦规律减小,励磁电流线性减小。t3时刻Q2零电压开通。

[t3 - t4]阶段:t3时刻Q2零电压开通,与第一阶段类似,Lr、Cr谐振,谐振电流以正弦形式减小,励磁电流线性减小。t4时刻谐振电流等于励磁电流。

[t4 - t5]阶段:t4时刻开始变压器原边电压为0,副边整流二极管全部截止,原边不再向副边提供能量,励磁电感不再被输出电压钳位,开始参与谐振。LLC谐振电流基本不变。

[t5 - t6]阶段:与[t2 - t3]阶段类似,电路进入死区时间,Q1、Q2全部关断,谐振电流ILr对Q1的结电容充电,当它的电压等于电源电压时,体二极管导通,变压器原边绕组极性上正下负,副边整流二极管D1、D4自然导通,励磁电感Lm电压被输出电压钳位,不再参与谐振。

谐振电流开始以2πLrCr为周期程正弦规律增大,励磁电流线性增大。t6时刻Q1零电压开通,开始进入下一个周期。

在[t1 - t2]阶段和[t4 - t5]阶段,假设谐振电流不变,设为Im,则输出电压Uo可表示为:


式中:Ui为输入电压;T为开关周期;Ts为Lr和Cr谐振时的谐振周期。从式中可以看出,当T = Ts即fr = fs时这种情况下[t1 - t2]阶段和[t4 - t5]阶段将不存在,谐振电流是纯粹的正弦波,副边整流电路输出电流临界连续,均方根值最小,开关管导通损耗最小,电路效率最高[8]。所以,当LLC电路工作在谐振频率时,效率最高。本文中LLC电路的主要作用就是隔离,在保证隔离的基础上要使效率最高,因此本文中使开关管的开关频率等于谐振频率。最大功率点跟踪控制策略

最大功率跟踪基本原理

太阳能电池是一种非线性直流电源,它的输出受太阳光照条件的和温度等环境影响非常大。在一定太阳照度和一定结温的条件下,当光伏电池的端电压(电流)发生变化时,其工作点也会沿着曲线变化。但是,一定会存在一个点,使得太阳能电池输出的功率最大。这一点就被称为最大功率点,寻找这一最大功率点的技术就被称为最大功率跟踪技术(Maximum Power Point Track-ing,MPPT)。

在常规的线性系统电气设备中,为了获得最大功率需要使负载的电阻等于电源内阻。但太阳能电池是一个非线性电源,它的内阻受环境影响而不断变化,为了进行负载电阻匹配从而获得最大功率,就需要不断调整负载阻值。DC-DC变换器的等效电阻跟开关管的工作状态有关,因此可以通过调节它的占空比来改变它的等效电阻,使它的等效阻值一直等于太阳能电池的内阻,这样就可以使太阳能电池一直工作在最大功率点。

这就是光伏并网逆变器最大功率跟踪的基本原理。

最大功率跟踪算法

目前常用的最大功率跟踪算法主要有恒定电压跟踪法、扰动观察法、电导增量法等几种,其中电导增量法以优良的跟踪性能倍受青睐。下面简单介绍其工作原理。图4是太阳能电池特性曲线图。由图可以看出,在最大功率点的时候功率曲线斜率为0,即功率P对电压V的导数为0,所以有dPdU =0,又因为P=UI,所以:



由上式可知,当输出电导的变化量等于输出电导的负数时,太阳能电池工作在最大功率点。具体实现方法是:通过检测太阳能电池的输出电压和电流,根据上一个采样周期电压和电流的值计算出变化量;然后判断电压的变化量是否为零。若为零,再判断电流的变化量是否为零,若都为零,则表示阻抗一致,则参考电压Vref不变,占空比不变。若电压变化量为零,电流变化量不为零,则表示光照强度有变化,根据电流的变化方向来决定扰动方向。当电压变化量不为零时,判断是否符合上式,若符合,表示在最大功率点。若电导变化量大于负电导值,则表示功率曲线斜率为正,功率点在最大功率点左侧,需要增大Vref,反之需要减小Vref。



结语

本文鉴于传统光伏并网逆变器使用工频变压器进行隔离的不足而提出了一种利用半桥LLC串联谐振电路进行隔离的光伏并网逆变器设计方案,该设计方案通过将传统变压器隔离型光伏并网逆变器和采用LLC谐振电路隔离的光伏并网逆变器进行对比分析可知,半桥LLC串联谐振电路能实现开光管的零电压开关,减小开关损耗,从而大大提高逆变器系统的转换效率。而且LLC谐振电路体积小,重量轻,成本低,易于实现小型化和模块化,有助于光伏并网逆变器的广泛推广使用,以此证实了改方案的具有很强的实用性。

关键字:LLC  谐振电路 编辑:探路者 引用地址:如何利用LLC谐振电路改进光伏并网逆变器

上一篇:谐振单相全桥逆变器控制方法如何确定?
下一篇:反激开关电源变压器设计有方

推荐阅读最新更新时间:2023-10-12 22:43

基于并联谐振逆变电源控制电路的设计方案
1 引言 在现代工业的金属熔炼、弯管,热锻,焊接和表面热处理等行业中,感应加热技术被广泛应用。感应加热是根据电磁感应原理,利用工件中涡流产生的热量对工件进行加热的,具有加热效率高,速度快,可控性好,易于实现高温和局部加热,易于实现机械化和自动化等优点。 随着电力电子学及功率半导体器件的发展,感应加热电源基本拓扑结构经过不断的完善,一般由整流器、滤波器、逆变器 及一些控制和保护电路组成。逆变器在感应加热电源中起着十分重要的作用,根据逆变器的特点,本文提出了一种应用于感应加热的并联谐振逆变电源设计方案,针对其主电路、斩波电路及逆变器控制电路等进行了分析和设计。 2 电源系统的总体设计 电源的系统框图为图1所示,三相交流电压通过不控整流
[电源管理]
基于并联<font color='red'>谐振</font>逆变电源控制<font color='red'>电路</font>的设计方案
如何利用LLC谐振电路改进光伏并网逆变器
光伏发电系统是利用电子组件将太阳能转化为电能,逆变器作为整个系统的核心,通常又分为隔离型和非隔离型两大类,如果将两种类型的逆变器优点结合,对整个光伏发电系统的效率、可靠性、使用寿命的提高以及降低成本都是至关重要的。 本文主要介绍一种利用LLC谐振电路进行高频光伏并网逆变器设计,将隔离型和非隔离型的优点结合,既减轻了重量、缩小了体积、降低了成本,又提高了电能质量和安全性。而且由于使用LLC谐振电路能够实现DC-DC级功率器件的软开关,可以大大降低功率器件的开关损耗,因此能显着提高整个系统的转换效率和器件的使用寿命。 光伏并网逆变器结构及基本原理 系统设计结构 采用LLC隔离的光伏并网逆变器结构如图1所示,它包括DC-DC直
[电源管理]
如何利用<font color='red'>LLC</font><font color='red'>谐振</font><font color='red'>电路</font>改进光伏并网逆变器
基于并联谐振逆变电源控制电路的设计方案
1 引言 在现代工业的金属熔炼、弯管,热锻,焊接和表面热处理等行业中,感应加热技术被广泛应用。感应加热是根据电磁感应原理,利用工件中涡流产生的热量对工件进行加热的,具有加热效率高,速度快,可控性好,易于实现高温和局部加热,易于实现机械化和自动化等优点。 随着电力电子学及功率半导体器件的发展,感应加热电源基本拓扑结构经过不断的完善,一般由整流器、滤波器、逆变器 及一些控制和保护电路组成。逆变器在感应加热电源中起着十分重要的作用,根据逆变器的特点,本文提出了一种应用于感应加热的并联谐振逆变电源设计方案,针对其主电路、斩波电路及逆变器控制电路等进行了分析和设计。 2 电源系统的总体设计 电源的系统框图为图1所示,三相交流电压通过不控整流
[电源管理]
基于并联<font color='red'>谐振</font>逆变电源控制<font color='red'>电路</font>的设计方案
AM,LLC发布全新汽车级双极步进电机驱动器或双直流电机驱动
Allegro MicroSystems,LLC推出一款全新的汽车级双极步进电机驱动器或双直流电机驱动器IC AMT49702,新产品专为低压步进电机和双/单高电流直流电机的脉冲宽度调制(PWM)控制而设计。AMT49702的输出电流可达每通道1A,工作电压为3.5至15V,主要应用领域包括:平视显示器(HUD)中的镜面定位和防尘罩、导航系统中的屏幕升降器、驾驶员注意力监测系统中的摄像头移动或对焦、以及方向盘反馈中的振动警报等等。 AMT49702是一款汽车级器件,已经过扩展的温度和电压范围测试,能够确保符合汽车或工业应用的要求。它具有内部固定的关断时间PWM定时器,可根据选择的电流检测电阻来设置峰值电流。AMT49702还
[工业控制]
AM,<font color='red'>LLC</font>发布全新汽车级双极步进电机驱动器或双直流电机驱动
利用LLC谐振电路隔离的光伏并网逆变器设计
本文提出了一种利用LLC谐振电路进行隔离的高频光伏并网 逆变 器设计方案,将隔离型和非隔离型光伏并网逆变器的优点结合到一起,既减轻了重量、缩小了体积、降低了成本,又提高了电能质量和安全性。而且由于使用LLC谐振电路能够实现DC-DC级功率器件的软开关,可以大大降低功率器件的开关损耗,因此能显着提高整个系统的转换效率和器件的使用寿命。 1 光伏并网逆变器结构及基本原理 1.1 系统设计结构 采用LLC隔离的光伏并网逆变器结构如图1所示,它包括DC-DC 直流升压级和DC-AC  逆变 级两级结构,前级负责对太阳能电池阵列传送过来的直流电进行升压和最大功率跟踪,后级负责对前级传送过来的直流电进行逆变,最后经过滤波电路后进行并网。
[电源管理]
利用<font color='red'>LLC</font><font color='red'>谐振</font><font color='red'>电路</font>隔离的光伏并网逆变器设计
详解PI如何利用组合技术,优化中功率开关电源的设计和成本
能效已经成为所有电子产品越来越关注的焦点之一,一方面这意味着可以节省更多的能源,减少碳排放;另外更高的能效意味着更小,更紧凑且更轻薄的电源系统,这可以使电子产品在成本,尺寸,易用性等方面不断进步。 对于电源来说,由于牵扯到诸多分立元件、变压器、功耗、散热器、EMI、布线、保护等等诸多元素,还要着重考虑SWaP-C,因此高集成度似乎成为了目前电源管理技术的唯一突破点。通过高集成度,设计人员可以极大减少设计周期,降低开发难度与系统成本。 Power Integrations(PI)是一家成立于1988年的电源管理芯片供应商,自成立之初就将Integration(集成)作为公司最大的产品竞争差异化,通过一步步将各类功率器件及其他
[电源管理]
详解PI如何利用组合技术,优化中功率开关电源的设计和成本
LLC拓扑的谐振式变换器设计问题
LLC拓扑的谐振式变换器有着零电压开关、器件的电压应力低等特点,非常适合在一些高效大功率电源的应用上。 - 变压器的饱和问题: 我的变压器设计的工作磁感应强度Bm并不高,为什么我的LLC变压器磁芯温度很高? 由于LLC变压器工作在LC谐振状态,LC谐振回路有个特点就是Q值问题,在这里Q值是大于1的,因而就会有实际加在变压器上的电压要比输入电压高的问题,因而在设计变压器的时候就必须考虑到这一点,否则变压器就不是工作在你设计的磁感应强度上。 由于输入电压高的时候,开关频率也比较高,谐振回路的增益也比较低,饱和的问题不大;但当输入是低压的时候,开关频率比较低,LLC谐振回路的增益较大,因而比较容易发生变压器饱和的问题。因而在计算变
[电源管理]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved