一种极具成本效益的磁卡读卡器设计

发布者:SparklingSun最新更新时间:2015-07-31 来源: eefocus关键字:成本效益  磁卡  读卡器  传感器  电磁体 手机看文章 扫描二维码
随时随地手机看文章
通过磁性图案存储信息的技术最早出现在音频记录领域。从那以后,这个概念已被扩展应用于许多不同产品,如软盘、音频/视频磁带、硬盘以及磁条卡。本文将主要讨论在全球金融交易和门禁控制中得到广泛使用的磁条卡。

 

读取磁条卡除了需要解码数据的数字逻辑外还要求很重要的模拟电路。在磁卡上记录数据是数字化的过程,通过沿着磁条长度磁化粒子完成。而成功读取磁卡具有相当大的挑战性,因为在实际应用中传感器信号的幅度会随着划卡速度、磁卡质量和读卡磁头的灵敏度而变化。此外,频率也会随着划卡速度变化而变化。这就要求模拟电路能够适应这种变化,无失真地处理传感器信号。本文将介绍如何处理传感器信号变化的机制。

 

磁性与磁卡

为了理解划卡速度、磁卡质量和传感器灵敏度的影响,了解信息是如何存储在卡上的以及如何被读卡头检测出来很重要。在磁性存储系统中,信息用诸如氧化铁等磁化 材料上的极性图案表示。图1显示了涂覆在磁化材料上的磁条。磁化材料上的颗粒可能处于某种特定的排列方向,或者因以前没有受到特定方向磁场的照射而处于随 机方向。然而,如果施加一定的外部磁场,磁条上的颗粒将按照外部磁场排列方向。

 

图1:在外部磁场的影响下磁化材料按特定方向排列。
图1:在外部磁场的影响下磁化材料按特定方向排列。

 

在实用化系统中需要用到一个写入磁头,它其实就是绕在磁心上的一个线圈。通过控制线圈中的电流方向可以很容易编程磁场方向。这有助于在磁卡上形成南北极图案。磁极之间的空隙越窄,磁卡上能够编程的数据密度就越高。

 

在 F2F编码机制中,如果在比特周期内发生磁极转换,那就代表逻辑1,否则代表逻辑0。例如图3所示,如果比特周期是Δ,而磁极转换发生在Δ/2处,那么这 个比特就是逻辑1,否则就是逻辑0。注意,逻辑1和逻辑0在磁卡上占据的长度是相同的。不过比特周期Δ会随划卡速度而变化,这个问题在读卡中必须加以解 决。

 

图2:用电磁体磁化磁条表示逻辑1和逻辑0,其中用到了F2F编码机制
图2:用电磁体磁化磁条表示逻辑1和逻辑0,其中用到了F2F编码机制

 

图3:磁极图案和数据。
图3:磁极图案和数据。

 

 

值得注意的是,比特周期长度对逻辑1和逻辑0来说都是相同的。

 

根据信息量的多少,数据将被编码在不同的行,这个行被称为磁道。一个磁卡上最多可以有3条磁道。

 

图4:磁卡上的磁道。
图4:磁卡上的磁道。

 

读过程正好相反,它需要使用一个结构上与图2所示的线圈-磁芯相同的读卡头。需要注意的是,每个磁道要有一个传感器。在划卡时,源自磁条的磁场将在读卡头线圈中感应出电压。图5显示了从读卡头得到的波形。

 

图5:读卡头(传感器)信号。
图5:读卡头(传感器)信号。

 

信号在每次磁通量转换时出现峰值。这是因为在磁极边缘具有高密度的磁通量。正如你看到的那样,信息是用信号峰值的位置表示的。峰值检测器电路可以解码这个信号,或者使用阈值非常接近信号峰值的磁滞比较器。不过在我们将这个信号交给检测器电路之前,还需要进行额外的处理,原因如下:

 

划卡速度:划卡速度的单位规定为英寸/每秒(IPS)。一般来说,要求磁卡读卡器能在5 IPS至50 IPS的划卡速度范围内正常工作。传感器信号的幅度随划卡速度变化而变化。划卡速度增加,读卡头中的线圈切割的磁通量变化速度也增加,因此信号幅度会变大。与之相反,当划卡速度变慢时,信号幅度将降低,从而增加数据读取的难度。[page]

 

磁卡质量:随着时间的推移以及使用量的增加,卡的质量将随着磁场强度的降低以及由于磁卡上的灰尘与刮擦而引起的失真加大而下降。这些因素综合在一起将降低传感器信号的幅度。

 

读卡头灵敏度:读卡头灵敏度取决于线圈匝数以及读卡头与磁条之间的间距。

 

由于所有这些参数的影响,信号幅度可能在几百个uV至几十个mV之间变化。这个范围可以用放大器进行补偿。但不能用固定增益放大器。当划卡速度很高,卡的质量又很好时,放大器输出可以饱和到电源轨 电压。而当信号饱和时,用两个连续峰值之间的时间差代表的信息将丢失。因此如实地放大传感器信号、不至于使波形发生饱和或改变很重要。这就要求使用增益可 配置的放大器,以便我们随时调整增益。要做到这一点,系统必须能够检测信号变弱的时刻。这可以用跟踪传感器信号的ADC寻找近似的信号峰值来实现。

 

图 6显示了一个完整的系统。最好将放大电路做成两级,用ADC接收第一级电路的输出。这样就无需高分辨率ADC,8位ADC就足以满足这种应用需求。第一级 可以是固定增益的放大器,也可以是可变增益放大器。第二级是可变增益放大器。CPU读取ADC结果,并通过调整增益使第二级放大器的信号输出达到最佳。第 二级放大器的输出送到峰值检测器/磁滞比较器电路进行峰值检测。来自检测器的脉冲输出被馈送至定时器进行时间差测量,然后由CPU解码出1和0。

 

图6:磁卡读卡器框图。
图6:磁卡读卡器框图。

 

至 此仍然存在增益更新之前是否有数据丢失的问题。为了避免这个问题,磁卡的两头会用前导零进行编码以实现同步(这样可以支持双向划卡)。这样做的目的是使解 码器同步于划卡速度。举例来说,在磁道1中,共有约62个前导零。磁道1具有210个比特的数据密度。因此我们可以估算出划卡速度为5 IPS时前导零将持续约60ms时间,划卡速度为50 IPS时前导零将持续6ms。对另外两个磁道来说或多或少是相同的,如图7所示。在人为划卡时一开始就是50 IPS的划卡速度是不可能,因此系统具有比6ms长得多的时间来测量峰值并调整增益。图8显示了增益控制过程。

 

图7:磁卡中三个磁道的内容。
图7:磁卡中三个磁道的内容。

 

需要注意的是,CPU在划卡期间可能会持续精细调整增益以适应变化的幅度。正常情况下,顺着划卡的方向,划卡速度会增加,从而增加信号幅度。注意,在使用以恒定速度划卡的自动划卡机时这个观点是不正确的。

 

图8:增益改变过程。
图8:增益改变过程。

 

实现磁卡读卡器

图9显示了基于赛普拉斯PSoC 1的双磁道磁卡读卡器实现方案。PSoC 1处理器具有与8位处理器内核集成在一起的可配置模拟和数字块,在单颗芯片上集成了所有的功能。需要注意的是,图中所示的无源器件是在处理器的外部。

 

图9:PSoC 1磁卡读卡器
图9:PSoC 1磁卡读卡器

 

由于传感器信号可能是负的,因此必须用直流进行偏置。在PSoC 1中,模拟信号可以以不同于电源地的地为参考。这个地被称为模拟地(AGND),输入信号被钳位到这个模拟地。信号随后用可编程增益放大器(PGA)进行两级放大。PGA是用连续时间模拟模块实现的。它具有一个电阻阵列,当配置为放大器时用于改变增益。增益可以被配置为1至48之间18个选项之一。CY8C28243 PSoC 1集成了一个最大采样速率为150ksps的10位SAR ADC。

 

CPU读取ADC,然后控制放大器增益。放大后的信号送到磁滞比较器产生边沿接近信号峰值的数字信号。CPU随后必须调整放大器增益,使其阈值接近峰值但不超过 峰值。这有助于避免磁卡发生抖动时出现定时误差。磁滞比较器输出则送到定时器进行脉冲宽度测量。CPU读取定时器输出,并解码为逻辑1或0的数据。当划卡 结束时,CPU打包数据比特,检查是否有错误,然后通过I2C、SPI或UART接口将数据送给主机。

关键字:成本效益  磁卡  读卡器  传感器  电磁体 引用地址:一种极具成本效益的磁卡读卡器设计

上一篇:一款基于单片机的脉冲快速充电系统设计
下一篇:选择合适的微控制器策略

推荐阅读最新更新时间:2024-03-16 14:26

小电流测量的小细节,你都知道吗?
目前市场上有不同品牌各式各样的高精度传感器,但基本原理都一样,这里我们以LEM品牌举例,LEM公司是一家专注于研发和生产基于磁通门技术和霍尔原理的电流传感器的公司,他们做出的传感器精度高,使用方便,应用十分广泛。 由于LEM传感器大多数是电流型的传感器,在使用大量程时,会给配套使用的仪器出了一些难题 当电流比较小时无法准确测量。 以致远电子PA333H高精度数字功率计和量程为1000A的IT1000-S举例,传感器的变比是1:1000,也就是经过传感器后的电流都被缩小1000倍。PA333H电流端子的最小量程为1A,最小能准确测量的电流为最小量程的1%,也就是10mA。 当使用IT1000-S后,我们进行
[测试测量]
小电流测量的小细节,你都知道吗?
汽车传感器测试特点
传感器是汽车控制系统的重要部件,传感器质量的优劣直接影响到能否实现对汽车其他部位的有效监测和控制,关系到汽车驾驶的安全,所以需要在传感器装车之前对其进行有效的测试,对其综合性能进行验证。汽车传感器因为类型繁多,其测试有着自身的特点,主要表现有以下四点: 被测对象的多样性及快速变化性 汽车上常用的传感器类型包括轮速传感器、曲轴/凸轮轴位置传感器、温度传感器、压力传感器、爆震传感器等。针对层出不穷的车型,每个功能相同的传感器在外形上又有着各种各样的差异,再加上测量指标、生产环境等要求越来越苛刻,使得传统单一的测试工作台无法兼顾如此多样的传感器生产。 测试内容的近似性。 在实际生产中,不同传感器的测试内容又有着一定的近似性。因为从测试原理
[嵌入式]
使用硬件I2C读取温湿度传感器数据(HTS221)
本篇详细的记录了如何使用STM32CubeMX配置STM32L431RCT6的硬件I2C外设,读取HTS221温湿度传感器的数据并通过串口发送。 STM32CubeMX专栏 STM32CubeMX专栏自开设以来,目前已更新26篇文章,所有文章均在我的个人博客,该专栏汇集了所有我使用STM32CubeMX+HAL库调试过的外设,包括STM32内部外设,常用的模块,自开设以来收到了很多开发者的好评,这也是我决心要做下去的原因。 欢迎大家访问,如有问题,可以在博客文章下面留言指出: http://www. mculover666.cn/ 1. 准备工作 硬件准备 开发板 首先需要准备一个开发板,这里我准备的是ST
[单片机]
使用硬件I2C读取温湿度<font color='red'>传感器</font>数据(HTS221)
意法半导体推出高精度中压运放,提高工业和汽车传感器信号调理准确度
2023 年 10 月 24 日, 中国 – 意法半导体的 TSB182双运算放大器为传感器带来高准确度信号调理功能,主要产品亮点包括最大 20μV 输入失调电压、100nV/°C 温漂和4V-36V的中压工作电压。 除了高准确度、稳定性和宽电源电压范围外,TSB182 的额定工作温度是在 -40°C 至 125°C之间。在整个工作温度范围内,运放的最大失调电压为30μV,确保传感器性能在工业和汽车环境中保持稳定一致。封装包括MiniSO-8封装,可帮助设计人员节省电路板空间,设计尺寸更小的模块。改系列还提供符合 AEC-Q100 标准的车规器件。 TSB182兼备快速动态响应和低功耗,每路放大器的典
[汽车电子]
意法半导体推出高精度中压运放,提高工业和汽车<font color='red'>传感器</font>信号调理准确度
基于ZigBee与51内核的射频无线传感器网络节点设计方案
0 引 言   近年来,无线传感器网络技术得到了飞速发展,由于2.4 GHz 通信频段免费、开放等特性,各种基于该频段的通信协议,如Wi-Fi、蓝牙等技术已相当成熟,并得到了广泛应用。ZigBee 是一种基于IEEE802.15.4 标准的低功耗个域网协议,该协议基于2.4 GHz 频段,是一种低成本、低功耗的近距离无线组网通信技术,近年来广泛应用于各种射频通信领域,如区域定位、视距数据传输、物联网标签、车用无线电子设备等。   以Chipcon 公司基于ZigBee 协议的系列产品为代表的SOC(片上系统)也日趋成熟。因此,方案设计了一个成本低廉、性能稳定、功能齐全的开发系统一直是相关研究的一个重要组成。本文将提出一种基于Z
[模拟电子]
基于ZigBee与51内核的射频无线<font color='red'>传感器</font>网络节点设计方案
关于图像传感器的图像质量——要纠正的几个误区
当前我们对图像传感器的依赖程度超出了大多数人的想象。 图像传感器应用在汽车上,帮助我们避免碰撞;应用于建筑监控,防止非法入侵;应用于生产线,检查产品的质量 。有趣的是,人们经常按照像素大小和解析度等非常简单的指标,对图像传感器进行分类,但为不同应用选择合适的传感器要比这复杂得多。 分辨率 我们依赖于传感器来探测危险,或检测产品中的缺陷,因而传感器的图像质量至关重要。系统设计人员和最终用户通常认为,更高的分辨率(即图像中的像素更多)可以增强图像质量。但情况并非总是如此。更高的分辨率固然可以保留图像的锐化边缘和精细细节,有助于进行目标识别,但也有其他一些因素需要考虑。更高的分辨率会对一些关键参数造成不利影响,比如捕获速
[传感器]
关于图像<font color='red'>传感器</font>的图像质量——要纠正的几个误区
基于无线传感器网络的河流自动监测站设计
0 引言   河流是工农业发展的重要资源,同时对区域生态资源有着重要影响。伴随着自然条件的变化以及工业发展,频发的洪涝灾害和各种水污染问题严重影响河流的健康状况。因此建立实时有效的河流监测系统对防洪及水污染治理有着重要意义。   目前,河流自动监测系统主要由前方的 自动监测站 点和后方的控制中心组成。自动监测站负责对河流的各项指标进行监测,并使用移动通信网络,计算机网络、数传电台等传输方式将监测数据发送到控制中心。   现有自动监测站大多由 传感器 、数据采集器和传输设备组成,体积较大。监测站不同设备之间采用有线方式连接。河流监测点大多位于偏僻地区,受到布线和环境因素限制,自动监测站监测范围有限、灵活性差,无法大量部署站点。
[安防电子]
基于无线<font color='red'>传感器</font>网络的河流自动监测站设计
基于单片机与光电传感器的电动自行车速度与里程表的设计
   系统概述   本系统由信号预处理电路、单片机AT89C2051、系统化LED显示模块、串口数据存储电路和系统软件组成。其中信号预处理电路包含信号放大、波形变换和波形整形。对待测信号进行放大的目的是降低对待测信号的幅度要求;波形变换和波形整形电路则用来将放大的信号转换成可与单片机相连的TTL信号;通过单片机的设置可使内部定时器T1对脉冲输入引脚T0进行控制,这样能精确地算出加到T0引脚的单位时间内检测到的脉冲数;设计中速度显示采用LED模块,通过速度换算得来的里程数采用I2C总线并通过E2PROM来存储,既节省了所需单片机的口线和外围器件,同时也简化了显示部分的软件编程。系统的原理框图如图1所示。         
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved