无线手机使用的集成式RF功放与滤波器前端

发布者:collectors最新更新时间:2011-02-11 来源: 与非网 关键字:无线手机  RF  滤波器 手机看文章 扫描二维码
随时随地手机看文章

    CMOS设计人员多年来一直把各种功能集成到大型集成电路中。在通信终端中,到目前一直有两个RF元器件没有集成,即滤波器和RF功放器,这两种器件采用的构建技术都不兼容芯片上CMOS集成。在传统上,滤波器一直采用陶瓷或表面声波(SAW)技术构建,而RF功放器则一直使用GaAs异质结双极晶体管(HBT)或FET器件构建。由于这些技术与RFIC使用的硅或SiGe工艺有着很大区别,因此功放器和滤波器一直作为分散器件,与现在执行手机大部分RF功能的大规模集成芯片组分开。声音谐振器技术和先进的低噪声高线性度晶体管技术已经明显缩小了每种分散功能的体积。当前的单片电路滤波器和放大器技术允许设计人员突破RF集成障碍,重要的技术进步包括:
         ● 表面声波(SAW)滤波器
         ● FBAR滤波器
         ● 异质结双极晶体管(HBT)
         ● E-pHEMT

    由于每种技术都把某种RF功能精简到单片电路设备上,因此可能需要重要举措来提高集成度。以前的技术如陶瓷滤波器需要采用非单片电路结构,单片电路放大器集成起来很不方便。

    最近,多家公司已经开始采用多种芯片技术和多板上多芯片(MCOB)封装开发RF模块。这种方法通过采用优化的半导体工艺,可以实现最佳的滤波器和功放器性能。GaAs HBT或E-pHEMT放大器可以与基于硅的FBAR滤波器集成在一个价格低廉的封装中。同时,MCOB模块可以大大降低体积,改善RF前端的性能。

    集成式RF前端模块(FEM)的第一个、也是最明显的优势是可以进一步缩小体积。图1是双频CDMA手机的典型布局。黄色轮廓指明了容纳800MHz和1900 MHz频段的双工器、滤波器和放大器所需的空间。蓝色轮廓同比例显示了实现两个集成了双工器/放大器的FEM所需的电路板空间。尺寸大大降低主要归功于消除若干个元器件使用的多个输入/输出接口。

    RF FEM的第二个明显优势在于可以实现的效率改善。通过优化用于输出上功放器和滤波器/双工器之间的接口,设计人员可以把典型手机的通话时间延长半小时以上。

    能够把功放器和滤波器与实现最优效率或线性度性能的阻抗自由匹配起来,可以产生明显的好处。比较放大器和双工器组合,其中使用同一放大器,但集成程度不同。在全部的三项测试中,双工器的输出功率都设为+24.5dBm。改进的匹配程度及降低集成式前端模块中发射链的插入损耗,可以大大改进效率。在CDMA手机中,改进的效率可以把通话时间延长35-45分钟。

    第三个优点:由于RF元器件之间的线路长度可能非常短,因此集成式FEM更不容易受到RF干扰。通过把多种功能集成到一个微型MCOB器件中,RFIC的发射机输出与天线之间的整体电长度会变得非常短,因此,PCB的RF端收到的干扰和发射的干扰都会比较少,从而降低对其它元器件的潜在影响。

    这一性能改善将把我们带到哪里?通过采用零IF结构及数字应用技术,似乎可以明确一点,进一步集成对RF元器件不可避免。然而问题仍然在于:进一步集成RF放大器和滤波器会发生在RFIC和/或基带芯片组中,还是有单独的RF集成道路?

    多种市场发展态势表明,这种集成可能是分开的,也就是说,将在单独的元件中进行RF集成。例如,在GSM和W-CDMA市场中,RFIC通常由基带芯片之外的不同厂商提供。由于CMOS技术正在不断改进速度和性能,大多数专家同意,基带/RFIC芯片组在未来几年内将变得可行。CMOS技术的低成本使经济推动因素相当显著:一旦CMOS能够支持RFIC的功能,我们可以预计市场将需要可能实现的较低价位。

    另一方面,功放器和专用滤波器等RF元器件要求的性能与半导体工艺有着很大的差异。功放器要求高线性度,晶体管导致的噪声较低,同时把信号电平提升到接近1W。基于CMOS的放大器近年来取得一定的进步,但预计不会与高迁移性材料争夺高功率应用,因为CMOS工艺是为低电流/低电容晶体管应用优化的。因此,在要求大量功率的移动无线应用中,CMOS放大器在线性度和效率方面有着明显的缺点。

    滤波器和双工器给CMOS技术提出了更大的挑战。大多数移动手机目前采用陶瓷、SAW或FBAR谐振器,以利用陶瓷或声音技术提供的高Q优势。CMOS器件中的电感器Q一般约为100,而陶瓷没有负荷的Q值在1000 - 3000之间,单片电路FBAR谐振器的Q值则要高达3000。没有负荷的Q值越高,滤波器的插入损耗越低,滚降越剧烈,从而可以改进抑制性能。因此,许多芯片组供应商考虑把嵌入式滤波器集成到RFIC中。这种方法给简单的滤波器应用带来了一些希望,如GSM接收机和发射机滤波器,其中将在硅晶片流程中制作分散的模具,如FBAR,然后可以把模具嵌入到基带或RFIC器件中。(注:由于石英晶体基底和基于硅的RFIC的热量不匹配,因此可能很难以类似方式集成SAW滤波器。)

    在CDMA和W-CDMA等FDD应用中,一般使用双工器把接收机频段和发射机频段分开。由于双工器必须位于天线接口上,因此功放器自然而然地位于RFIC和双工器之间。因此对CDMA和W-CDMA,把双工器嵌入RFIC中变得有问题。为实现杰出的解决方案,有必要同时集成滤波器技术和功放器技术。

    在过去15年中,移动手机设计的整体发展趋势已经涉及到大规模集成度。这种趋势将继续为未来的多频多模式手机提供性能和成本优势。由于目前多家公司的RF开发取得进展,我们可以期待具有2G和3G功能的手机,并在电路板上留出更多的空间,实现更大的内存、处理能力及更加高级的应用。

 

关键字:无线手机  RF  滤波器 引用地址:无线手机使用的集成式RF功放与滤波器前端

上一篇:市场上各式各样GPS芯片解决方案分析
下一篇:一种智能手机的低功率损耗设计

推荐阅读最新更新时间:2024-05-07 16:13

基于芯片测试的环路滤波器设计
小数分频频率合成器在测试时必须外接一个环路滤波器电路与压控振荡器才能构成一个完整的锁相环电路。其外围电路中环路滤波器的设计好坏将直接影响到芯片的性能测试。以ADF4153小数分频频率合成器为例,研究了其外围环路滤波器的设计方法,给出了基于芯片测试的环路滤波器设计流程,并进行了验证测试。测试结果表明,该滤波器可满足小数分频频率合成器芯片测试的需要。 在进行小数分频频率合成器的芯片测试时,数字部分可以通过常规的数字测试方法即可以实现;而输出射频信号的相位噪声、杂散噪声则需要芯片工作在正常的输出状态下才能测试。小数分频频率合成器芯片在测试时需要与外接环路滤波器(LF)、压控振荡器(VCO)才能构成完整的锁相环回路,在具备正常的芯片功能的
[测试测量]
基于芯片测试的环路<font color='red'>滤波器</font>设计
罗姆首创带来电RF噪声消除功能的音频处理器
  日本知名半导体制造商ROHM(总部位于日本京都)开发出适用于音频设备的音量/音质调整产品---汽车音响用音频处理器“BD37033FV / BD37034FV / BD37068FV”、AV接收器用音频处理器“BD34701KS2”。   “BD37033FV / BD37034FV / BD37068FV / BD34701KS2”是累计出货量达5000万个以上、已获高度好评的ROHM音频处理器“BD37xxx 系列”“BD34xxx 系列”的新增产品。   本产品在保持现有系列产品特点的基础上,利用ROHM多年积累的模拟技术,于业界首家※搭载了将手机来电噪声对音频设备的影响抑制在1/10以下的RF噪声消除功能。  
[手机便携]
罗姆首创带来电<font color='red'>RF</font>噪声消除功能的音频处理器
各种热门射频芯片收发器电路设计及应用案例汇总
  射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。在电磁波频率低于100kHz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100kHz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波称为射频。本文为大家介绍几种射频收发器的芯片及应用电路,供大家参考。    基于TRF6900 单片机 射频收发器电路设计   本文介绍了TRF6900的结构、原理、特性及应用电路。TRF6900 是单片射频收发器芯片,其内部集成了完整的发射电路和接收电路。这种收发器还具有FM/FSK调制模式并采用三线制串行接口,因而可很方便地与微控制器相连接。适应
[电源管理]
使用非信令技术改进移动设备的射频测试
  目前,许多无线设备都结合了GSM、WCDMA、蓝牙、WLAN、GPS 和调频技术,并支持移动因特网所需高数据速率。而且,由于客户要求在任何大洲都能使用移动无线服务,因此许多设备还要工作在多频带并能支持多模操作。   对于客户而言,具备所有这些功能是很好的事情,但它们给测试工程师却带来了挑战。每种添加的额外技术和频带都额外增加了测试工作,由此导致生产测试过程的时间更长,测试成本因此而增加。这显然与人们希望降低移动通信产品价格的期望不符。成本的限制使得制造商需要采用全新的测试方法。幸运的是,使用非信令测试理念和预定义的测试序列,我们能把测试时间缩短到原来的十分之一。    射频设备调整两步法   按照节约成本措施制造的射频
[测试测量]
使用非信令技术改进移动设备的<font color='red'>射频</font>测试
多通道相参信号测量-- 射频信号测量连载(八)
在MIMO(Multiple-input and Multiple-output)、相控阵以及做科学研究的场合,通常需要对多于4路的高速信号做同时测量。为了满足这种应用,现代的高带宽示波器在硬件和软件上都提供了对于多通道测量的支持能力。 下图展示的是基于Z系列示波器的多通道级联方案以及示波器里的多通道测量软件,目前可以支持最多10台示波器的级联,提供20路同步的带宽高达63GHz的测量通道,或者40路带宽为33GHz测量通道。通过精确的时延和抖动校准,通道间的抖动可以控制在200fs(rms)以内。
[测试测量]
多通道相参信号测量-- <font color='red'>射频</font>信号测量连载(八)
详解汽车音响直流电源滤波器的设计
  1.汽车电气系统简述   近年来,随着汽车功能的不断增加和系统可靠性要求的不断提高,越来越多的电子控制单元(ECU)被引入到汽车设计中,汽车中的电气系统变得越来越复杂,已经成为汽车系统总成的核心。通常,汽车的电气系统分为供电系统和用电设备两部分。供电系统是指给用电设备产生、分配和传递电能装置的总称,它包括发电机、蓄电池、电线束、开关及继电器等,具有低压和直流的特点。汽车用电设备是指汽车电气系统中需要电源供给的设备,如:起动机、空调,音响,车灯,ABS 等等,其所需的电能由两个电源供给,即:发电机和蓄电池。其具有单线制供电特点,即:所有用电设备均并联。蓄电池和发电机的电源正极和各用电设备只用一根导线相连,而电源的负极搭接到汽车底
[嵌入式]
RF系统设计需要考虑哪些因素
简介   今天可以使用的高集成度先进射频设计可让工程师设计出性能水平超过以往的RF系统,阻隔、灵敏度、频率控制和基带处理领域的最新进展正在影响RF系统架构设计,本文旨在探讨某些参数特性,以及它们对系统性能的影响。    应对干扰   处于或接近所需工作频率的有害 RF信号,可能影响接收器精确调制所需RF数据包的能力。根据干扰与系统载波频率的接近程度,可以分为几类:a) 带内, b) 近带和 c) 宽带。采用不同的方法来减少各种类型干扰信号,以下列出常用的方法。    近带和宽带干扰   这种干扰抑制主要是改进射频装置的选择性和阻隔特性,选择性是描述射频装置在其它RF频谱中选择所需信号的能力。阻隔特性则描述IC器件忽略干扰
[模拟电子]
<font color='red'>RF</font>系统设计需要考虑哪些因素
vivo“射频前端电路及移动终端”等4项专利获授权
6月7日,天眼查APP显示,维沃移动通信有限公司申请的4项专利,包括“折叠结构和电子设备”、“无线充电装置”、“充放电控制方法、装置及电源设备”、“一种射频前端电路及移动终端”获授权。 “折叠结构和电子设备”公告号为CN216691847U,专利摘要显示,本申请公开了一种折叠结构和电子设备,折叠结构包括:基座,基座包括第一安装腔;转动件,可转动地设置于第一安装腔内;锁止装置,锁止装置包括记忆合金件和锁止件,记忆合金件能够产生形变并驱动锁止件伸入第一安装腔内,以限制转动件的转动。 “无线充电装置”公告号为CN216699587U,专利摘要显示,本申请涉及电子技术领域,公开了一种无线充电装置,所述无线充电装置包括:无线充电模块
[手机便携]
vivo“<font color='red'>射频</font>前端电路及移动终端”等4项专利获授权
小广播
最新网络通信文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved