基于无线传感器网络的LED景观照明控制系统设计

最新更新时间:2012-06-14来源: 中国LED网关键字:无线传感器网络  LED  景观照明 手机看文章 扫描二维码
随时随地手机看文章

  LED灯与传统照明光源相比具有功耗低、寿命长、响应速度快、无辐射、可高频开关闪断,调光方便等优点,是景观照明的重要选择之一。目前,太阳能LED景观照明系统在城市广场、主体公园等领域得到越来越广泛的应用。本文介绍的基于无线传感器网络广场景观照明系统实现了远程控制LED灯的开关、光强、色彩,可灵活构建多个景观场景,同时实时检测LED灯具工作状态与电源供给情况,确保系统维护及时有效。

  1 系统结构

  景观照明系统主要由照明单元、场景控制器与监控主机三部分构成,如图1所示。景观照明系统工作人员通过监控主机实现对整个景观系统各照明单元工作状态的检测、管理与控制,系统中设置一台监控主机,主机是一台连入Intenet、安装了景观照明系统监控软件的计算机。场景控制器及其所控制的照明单元是系统的基本组成单元。监控主机通过互联网和GPRS无线网络与系统保持信息交互,系统中根据景观照明规模与应用环境决定场景控制器台数,每个场景控制器控制协同1~127个照明单元运行。由于景观照明对实时性要求低于工业控制系统且所需传递信息量少,景观系统局部通信采用ZigBee无线传感器网络(WSN),照明单元完成WSN传感器网络设备(device)功能,而场景控制器则实现无线传感器网关功能并充当各自传感器网络的协作器(Co-ordinator),负责各传感器设备的组网及数据传递管理。系统中照明单元除完成传感器设备功能以外,需完成的工作包括采集本照明单元检测数据、根据系统要求发送数据、蓄电池充电管理、照明控制等。

图1 景观照明系统组成

图1 景观照明系统组成

  2 功能设计

  2.1 照明单元

  照明单元主要组成包括太阳能电池板(组)、电源管理模块、蓄电池(组)、LED灯控制模块、无线收发模块。

  太阳能板(组)将光能转换为电流,经电源管理模块为蓄电池(组)充电。景观照明系统开启后,电源管理模块将蓄电池(组)存储的电能转换为LED灯照明所需的12V直流电,电源模块实时检测蓄电池的电压,当蓄电池电压低于阀值,模块自动将LED供电转入市电,并完成220V交流电到12V直流电转换。

  LED灯控制模块根据场景设置需要完成LED灯的开关、调色、调光。LED灯目前通常采用1W 或3W的灯珠封装而成,透过不同的荧光粉LED灯珠可发出不同颜色的光。LED灯珠的封装方式有串联、并联、混联三种,可根据景观照明的色彩需求与亮度要求选择LED灯珠封装方式。景观照明系统中为达到更好的色彩还原性,系统中采用红(R)、绿(G)、蓝(B)三种颜色灯珠统一封装混联模式。LED灯控模块控制RGB三种颜色灯珠的亮度,通过透镜后形成多种色彩。控制LED灯珠亮度可以通过改变LED灯珠电流与调整LED灯珠点亮时间两种方式实现,相对改变电流调整方法,利用LED高闪断特点改变LED点亮时间更加简单且容易实现,是当前主要采用的调整灯珠亮度的方式。图2为LED灯中一路灯珠(红色)的控制原理示意图,集成电路U1是恒流源芯片(XLT604),同时为红、绿、蓝三色灯珠提供电源,PWM 引脚控制产生恒流源电流大小。MCU 的P1.5发出PWM 信号,占空比不同导致红灯珠点亮时间不同,从而使得红灯珠发光亮度不同,MCU P1.2引脚的高低电平则用于判断红灯珠是否损坏。

图2 LED灯珠控制电路

图2 LED灯珠控制电路。

  每个照明单元发光颜色是由监控主机统一控制,监控主机下达控制指令包含的参数有:场景代码,红、绿、蓝闪断占空比,启动时间与终止时间。其结构为:

  Struct LEDcontrol{

  Number:uint8;

  Red:uint8;

  Green:uint8

  Blue:uint8;

  Begintime:uint16;

  Endtime:uint16;

  Struct LEDcontrol*next;

  }

照明单元中按照启动时间(单位:s)顺序维护控制参数顺序链表。照明单元的转换控制流程如下:

  Int Sence_exchange(LEDcontrol* CUR)

  {

  Int result=0;

  Getcurrenttime(Time);

  If(Time>=CUR->next->begintime)

  {

  CUR=CUR->next;

  Exec_sence(CUR->sencenumber);

  Result= CUR->sencenumber;

  }

  If(Time>= CUR->endtime)

  {

  Exec_sence(default_sence)

  Result=0;

  }

  If(Time>=shuttime)

  {

  Shutdown();

  Result=9999;

  }

  }

  DS2438芯片(内部集成了温度传感器、A/D转换器,电流积分器等电路,具有测量电池温度、电压、电流和剩余电量等多项功能)。为提高系统的可靠性、维护性,照明单元基于DS2438设计了对蓄电池组过充、过放、过压、高温保护检测电路以及对重要部件LED灯的(结温、环温)、电压、电流检测电路。状态检测信息由场景控制器(传感器网关)上传监控主机,为加强系统管理维护、提升蓄电池使用寿命、保证系统运行可靠提供信息。

  2.2 场景控制器

  场景控制器内置GPRS模块通过GPRS网络接入Intenet后与上位机实现通信。同时,在ZigBee无线传感器网络中其角色为协调器,负责无线传感器的组网和管理各传感器设备(照明单元)。系统设计中将每个传感器网络内的通信节点最大值设定为128个,即1个协调器和127个设备。一个景观照明系统的照明单元可能超过127个,也就是在一个系统中同时存在2个以上的协调器及其负责的网络。系统中为每个协调器设置一个惟一的16位网络PAN ID,其管理的照明单元中内嵌ZigBee终端模块需设置与本网络协调器相同的PAN ID,这样位于场景控制器的协调器即可接受处理其网络覆盖范围内相同PAN ID终端的加入网络的请求,然后加入新照明单元节点的信息。

  系统运行中,场景控制器并不处理和保存监控主机以及照明单元发来的信息,它直接将照明单元发送的状态检测信息通过局域网交给监控主机处理,同时将监控主机下达的指令发送给各照明单元。监控主机负责整个系统多个场景及照明单元的信息处理判断。系统中场景控制起到作用为传感器网关,负责与各个设备通信及Intenet网的通信。

  传感器网关硬件组成包括MCU 单元,GPRS模块单元,ZigBee模块单元,电源管理单元,时钟单元。其中电源管理单元输入电压将蓄电池组电压转换为GPRS模块所需的4.1V,MCU所需的5V以及MCU模块所需的3.3V,MCU 模块的UART0与UART1分别与GPRS和ZigBee模块连接,用于实现网络控制与通信。电路设计中应注意GPRS模块启动时的大电流将造成电压下降0.6~0.7V,需在4.1V 输出端与地之间设计1~2个100μF的钽电容,避免由于电压降低到3.0V带来GPRS模块保护带来的重启。场景控制器使用NXPLPC1766 单片机(内含256 KBFLASH,64 KB RAM),其两个UART 口分别与GPRS模块与ZigBee收发模块接口连接。软件上基于嵌入式操作系统μC/OSⅡ实现了UDP、IP协议栈,系统中监控主机可通过UDP协议与网关实现信息交互。

  2.3 监控主机

  系统中监控主机是整个景观照明系统的信息中心,系统运行时上位机软件经由Intenet接收来自场景控制器转发的照明单元的状态信息,并根据场景设置要求发送查询、设置指令到场景控制器,然后由场景控制转发至相应的照明单元。

  监控主机同时也是系统的控制中心,配置控制整个系统照明单元启动时间、光源颜色及光强。系统以场景控制器为单位进行设置,为场景控制器控制的每个照明单元可配置参数,如:红、绿、蓝灯珠闪断参数各1字节(取值0~255),每个场景包含16位场景控制器号,场景代码(8位),127×32位照明单元。软件提供编辑功能,将编辑的结果编码后存储在本地硬盘文件。设置时加上起止时间发送给指定的场景控制器。

  监控上位机软件同时提供系统运行状态动态分析、报警、维护提示等功能。

  3 网络通信协议描述

  景观照明控制系统局域通信采用ZigBee无线传感器网络,该网络目前使用广泛,是一种低速率、低功耗、短距离的无线通信技术。ZigBee支持多种组网方式,系统基于效率、可靠性考虑,使用星型拓扑组网,即每个景观照明系统根据需要部署一个到多个Co-ordinator(场景控制器),每个场景控制器直接与Sensor device(照明单元)通信。由于每一个传感器网络只能有一个PAN Co-ordinator,系统中监控主机通过Intenet管理多个场景控制器,每个场景控制负责一个传感器网络的网络。

  (1)传感器网组网流程

  系统中为每个Co-ordinator(场景控制器)预定义一个PAN ID作为网络的标识,场景控制器启动(复位)后60s播发广播帧,开放Sensor device(照明单元)加入网络的请求应答,照明单元一旦启动或复位后,定时进行频道扫描,一旦发现网络中出现了可以使用的场景控制器,就发出请求,场景控制器检测到请求后,判断是该照明单元信息,决定接受或拒绝设备加入网络,同时更新自己的网络表。

  (2)传感器网络信息通信

  系统中传感器网络场景控制器与照明单元间的数据传输采用直接传输方式(无中间设备转发),即场景控制直接将数据发送给照明单元,当照明单元接收到数据后发送确认信息给场景控制器。该数据传输方式要求端节点设备随时都处于数据接收状态,也就是要求其随时都要处于唤醒的状态。场景控制器使用单播方式发送信息轮询各传感器节点,场景控制器启动后按时间片轮,依照网络表中各照明单元的顺序,定期发送数据发送请求帧到照明单元进行轮询,照明单元接收到发送请求帧,返回应答帧,应答帧中包含其状态信息(如电池电压,电辅,当前设置,灯颜色亮度等)。

  (3)传感器网与上位机的通信

  场景控制器启动获取IP地址并建立网络表,它定期(默认5min,可设置)报告本传感器网内照明单元状态信息到上位机。上位机通过网络设置场景控制器的轮询间隔,校对场景控制器本地时钟及该网络场景(照明单元参数集)。

  (4)系统同步

  景观控制中场景效果的实现需各照明单元间协调执行,这就要求解决各照明单元的同步问题。系统在解决同步问题上采取两级同步机制,上位机软件与场景控制器通信协议间使用校验时间帧,上位机定时发送时间校验帧,场景控制器通过该帧取得上位机时间,核对校正本地时间。传感器网络中采取场景控制器每60s发送广播脉冲帧实现其所管理网络各节点间的同步,脉冲帧中包含计时单位为秒的计数器更新数据,照明单元接收到广播脉冲帧后更新定时本地定时器计数的值,照明单元内部定时器每1s将此定时器计数的值1.传感器网关每10s广播一次当前时间信息,传感器网关内设时钟芯片,传感器网内部时间计数单位为秒,传感器网关将时钟芯片的HH:MM:SS换算为一秒计数,各传感器设备接收到此时间数据,更新内部的时间计数器,各传感器设备定时器1s中断一次,中断服务中时间计数器自加1.

  (5)主要传输数据

  系统中监控主机与场景控制器以及场景控制器与各照明单元间通信数据帧主要包括:

  其中:场景设置指令帧根据上位机操作要求,在改变景观照明或定时启动不同场景时由监控主机发出,场景控制接收到指令帧,回复应答帧(含本网照明单元状态信息)。状态请求帧由操作人员通过上位机软件随时发出,场景控制器接收到请求帧,回复应答帧。脉动帧则由场景控制器定时上报本网络状态信息。脉动帧与应答帧格式相同,脉动帧的帧序号为0,而应答帧序号与接收的指令或查询序号相同。脉动(应答帧)格式如图3所示。

图3 应答帧格式

图3 应答帧格式

  照明单元定时测量状态信息(1s检测一次),照明单元应答帧与其脉动帧格式一致,信息包括温度(1B)、湿度(1B)、电池电压(1B)、电源供给状态(电池、市电、电池+市电)与灯珠工况(1B)。

  4 结 语

  本文介绍了一种基于ZigBee传感器网络的景观照明系统的设计,该系统利用传感器网络实现了对系统内众多照明单元状态的实时检测及集中控制管理,系统提出的检测控制通信方式保证了多场景间切换的协调同步,实时性强。在城市主体公园应用中运行可靠,多场景的设置方便、自动切换准确。同时,该系统也可应用于公园、场馆照明等照明单元多的场所。

关键字:无线传感器网络  LED  景观照明 编辑:探路者 引用地址:基于无线传感器网络的LED景观照明控制系统设计

上一篇:CSA集团在照明盛会展出领先的照明设备测试和认证服务
下一篇:无线技术在LED照明中的应用

推荐阅读最新更新时间:2023-10-18 16:51

LED 1-5W驱动解决方案
On Semi公司的NCP3065是高达1.5A恒流开关稳压器,输入电压从3.0V到40V,反馈电压235mV,工作频率可调整到高达250kHz,逐个周期限流,主要用在汽车照明,大功率 LED 驱动 器,恒流源已急低压LED照明.本文介绍NCP3065主要特性, 方框图, 典型降压应用电路, 降压演示板应用电路和材料清单, 升压演示板应用电路和材料清单,以及 1-5W MR16 LED驱动GreenPoin解决方案框图,应用电路和材料清单. NCP3065, NCV3065: Up to 1.5 A Constant Current Switching Regulator for LEDs The NCP3065 is a
[电源管理]
<font color='red'>LED</font> 1-5W驱动解决方案
配置电源会对LED积分球测试造成什么影响?
当前市场上的节能灯种类繁多,而技术比较先进且更环保的当属LED节能灯。有数据显示,LED节能灯比白炽灯省电80%,比荧光节能灯省电50%。随着大功率LED驱动技术的发展,LED灯越来越趋向于未来主要照明系统,所应用的范围也涵盖到手机背光源、笔记本背光源、LCD电视、路灯、庭院灯等领域。也因为应用场合对于LED照明质量要求更为严格,LED光源出厂前需要进行发光效率、显色性及色温一致性的测试,并提供以数据为基础的测试报表。 如同大家所熟悉的手提电脑背光源,是将很多个LED灯珠组合而成,则色差问题也越来越明显。如果使用的LED灯珠不是同一批次的,则很容易导致波长不一、色差等问题,这一问题即使是使用同一批次的LED灯珠也在所难免。对于
[测试测量]
配置电源会对<font color='red'>LED</font>积分球测试造成什么影响?
关于LED路灯光衰问题的探讨
LED路灯严重光衰的问题,需要从LED散热技术的根本来解决。LED路灯严重光衰,导致安装不到一年的LED路灯无法通过使用单位认证验收。至于“LED路灯严重光衰”就需要从LED散热技术的根本来解决。   LED路灯光衰竭的成因探讨   温度其实就是LED路灯光衰的关键问题,偏偏LED路灯就卡在这个环节。LED路灯由于发光功率大于家用灯具,因此厂商在散热基板鳍片、散热模块的设计上费尽苦心,组装完毕需在灯具散热模块外面,加烤漆保护以防气候侵蚀。不料这个外部保护的喷漆却把散热模块的热度又封了回去,造成散热不良导致LED磊晶光衰。   LED磊晶发光热能属于小范围的集中热能,在高功率路灯的应用时,电力输入功率也大
[电源管理]
在STM8 Nucleo-64开发板上使用GPIO和中断控制器驱动LED
NUCLEO-8S208RB(基于STM8S208RBT6)和NUCLEO-8L152R8(基于STM8L152R8T6)开发板可用于评估所有STM8S系列和STM8L系列微控制器的主要特性。 本应用笔记简要介绍了如何使用NUCLEO-8S208RB和NUCLEO-8L152R8开发板上的GPIO和中断控制器驱动一组LED指示灯。 当微控制器(本例中为STM8S208RBT6或STM8L152R8T6)使用连接到主机电脑的USB电缆供电时,LD2和LD5指示灯(不是板载的LED)开始闪烁。 每次按下“push”按钮,中断控制器产生一个用于控制I/O的中断,然后改变LED的显示方式。 1. 应用说明 本节主要介绍了在NU
[单片机]
在STM8 Nucleo-64开发板上使用GPIO和中断控制器驱动<font color='red'>LED</font>
浅析LED背光技术优势
LED 背光源与传统CCFL背光源的成本上来看,在 LED背光 技术已成主流的今天,凭借着不含汞、低能耗、色彩好、寿命长等诸多优势得到了消费者的认可。同时,小尺寸LED背光源的成本已经逐渐下降到和CCFL背光源非常接近的价位。对消费者而言,拥有一款 节能环保 又实惠的产品,自然会受到消费者的追捧。 LED背光源技术凭借其独特、压倒性的优势,逐渐显示出强大的应用前景。那么,接下来就为大家简单总结一下LED背光技术与CCFL背光技术相比较,LED背光技术的优势所在。 LED背光技术:十大领先优势 LED作为LCD的背光源,与传统背光技术相比,除了在色域范围的优势外,还有很多独特的优点,归纳为十个方面: 1)LE
[电源管理]
led照明领域发展趋势 配件市场也沾光
    LED照明已成为21世纪居室照明领域的一种趋势,LED已经呈现取代传统白炽灯和日光灯势头,居室传统照明灯具已面临严峻挑战。靠一只灯泡照亮一间屋子已是过去的事情了。现在的人们,在装修房间时更注重细节,浴室镜上方的一盏小灯、走廊墙壁挂画上方的一盏射灯,都能体现出时尚别致的品位。       据初步统计,2010年我国LED销售产值将突破1500亿元,这一数据是2008年的两倍,并每年以30%的速度继续增长。据了解,仅广东一个省,预计到2012年产业规模就将达到1200亿元。2010年我国政府继哥本哈根会议后提出及实施的低碳经济政策,在两会后毫不动摇地推出的'十二五'绿色照明发展计划,使得LED半导体照明产业迅速成了照明行业的花魁
[工业控制]
智能照明LED灯显示与报警电路设计
   LED 灯显示模块   模拟时LED 灯显示模块主要由三级LED 灯组成, 用P2.0、P2.1、P2.2 口控制三极管导通和截止,实现了对输入端不同要求的响应, 系统中LED0,LED1,LED2 分别是第一档、第二档、第三档的光度控制输入口。其硬件电路图如图6 所示。      图6 LED 灯显示电路图    报警模块   模拟时本模块用两个NPN 三极管分别作为蜂鸣器的驱动,当b 极高电平时三极管导通,蜂鸣器工作发出声音。当b极为低电平时三极管不导通,蜂鸣器不工作。b 极连接一个隐形的手动开关作为报警模式的启动与关闭切换。通过单片机的P2.3、P2.4 口控制其发出报警声音, 当有小偷入侵时蜂鸣器发出连续的报警
[电源管理]
智能<font color='red'>照明</font><font color='red'>LED</font>灯显示与报警电路设计
Global Lighting推出单LED照明器件
Global Lighting Technologies公司日前推出的一系列密封光导产品,使用该产品只采用单个LED来实现背光照明,很好的降低了背光模块的成本。 这种光导产品采用该公司的MicroLens专利技术。该MicroLens背光照明器件的对角尺寸从0.24英寸到15.4英寸,可提供单个LED单色、双色和三色背光照明。其应用领域包括数码相机、数码摄像机、蜂窝电话、PDA键盘、可编程触摸屏热敏元件、控制显示器、汽车内部显示器和桌面显示器等。 MicroLens基于像素的光线抽取技术可实现完全集成的背光照明模块,并且具有较高的亮度、明亮的色彩、超薄的外形(可达0.60mm或更薄)、较好的均匀度(平均可达约80-85
[新品]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved