基于MAX16024的低功耗设备电源备份方案

最新更新时间:2009-09-10来源: 电子设计工程关键字:供电  备份  稳定性  MAX16024  低功耗 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  在低功耗设备中,供电稳定性是影响设备性能的关键因素之一,高效的电源备份系统可为低功耗设备提供稳定的电源管理性能和灵活的供电配置选择。因此,这里提出一种基于MAX16024的低功耗设备电源备份方案。

  2 MAX16024简介

  MAX16024是一款低功耗电源备份器件,可以提供稳压输出,以及高达100 mA的输出电流。MAX16024内部包含一个低压差稳压器、微处理器(μP)复位电路以及电源切换电路,还包括手动复位、电源失效检测比较器和电池供电指示器等其他功能。这款器件还可减少外部元件的数量,减小电路板空间并提高可靠性。

  MAX16024的输入电压为1.53~5.5 V,并可提供固定的1.2 V、1.8 V、2.5 V、3.0 V和3.3 V标准输出电压。MAX16024可通过外部电阻分压器设置输出电压,所有输出均采用推挽或漏极开路配置。MAX16024工作在一40℃~+85℃工业级温度范围,提供8引脚或10引脚TDFN封装,图1为MAX16024的引脚配置和内部结构。以下为MAX16024的引脚功能描述:

  •   CEIN(引脚1):片选输入。CEIN选通电路输入;不用时,将其连接到GND或OUT;
  •   Vcc(引脚2):电源电压输入。采用0.1μF电容旁路Vcc至GND;
  •   BATT(引脚3):备份电源输入。如果Vcc低于复位门限(VTH),VBATT≥Vcc,且稳压器进人非稳压区域,稳压器由BATT供电;如果VBATI  MR(引脚4):低电平有效、手动复位输入。当MR拉低时,触发RESET为低电平;MR由低变高后,RESET在复位超时周期内仍保持低电平。不用时,将MR接至OUT或悬空。MR内部通过30 kΩ上拉电阻连接到Vcc。
  •   SET(引脚5):用来设置输出电压的输入端。对于固定输出电压版本(MAX16024_TB_),不用时,SET接GND。对于MAX16024_TB_,SET连接至外部分压电阻,能够将输出端电压设置在1.8~5.25 V之间。
  •   BATT ON(引脚6):高电平有效电池指示输出。当器件进入电源备份模式时,BATT ON变高。
  •   GND(引脚7):接地。
  •   RESET(引脚8):低电平有效复位输出。当Vcc低于复位门限或MR拉低时,触发RESET为低电平。Vcc高于复位门限并且MR拉高后,RESET在复位超时周期内仍将保持低电平。RESET提供推挽和开漏输出选项。
  •   OUT(引脚9):线性稳压器输出电压。所有器件均提供工厂预设的1.2 V、1.8 V、2.5 V、3.0 V和3.3 V固定输出电压。
  •   CEOUT(引脚10):低电平有效片选输出。只有在CEIN为低电平且没有进入复位状态时,CEOUT才为低电平。触发复位时,如果CEIN为低电平, CEOUT将继续保持12 μs(典型值)的低电平状态然后变高,或者当CEIN变高时跳变到高电平,具体取决于首先发生哪一种情况。

  在MAX16024的典型连接中,OUT端为SRAM供电;如果VCC高于复位门限(VTH),或者VCC低于VTH但高于VRATT,稳压器将由VCC 供电。如果VCC

  (1)备份电源切换在断电和电源失效的情况下,往往需要保存RAM内的数据内容。MAX16024的BATT带有备份电源切换电路,当VCC跌落时将自动切换到备份电源供电。MAX16024带有BATT ON输出,进入电源备份模式时该引脚变为高电平。当满足以下条件之一时,器件将切换到电源备份模式:1)VCC低于复位门限;2)VCC低于VRATT; 3)稳压器进入非稳压状态(除1.2 V输出电压版本之外)。

  (2)片选信号选通MAX16024提供内部CE信号的选通控制,可避免在电源失效或断电时向CMOS RAM写入错误数据。正常工作期间,CE选通使能并将CE瞬变直接传送到输出端。触发复位输出时,该选通通道被禁止,以避免破坏CMOSRAM内的数据, CEOUT通过内部电流源被拉高至OUT。CEIN至CEOUT之间的1.5 ns传输延迟使器件可以配合大多数微处理器和高速DSP工作。正常工作模式下(没有复位),CEIN通过低导通电阻的传输门连接到CEOUT。复位时,如果CEIN为高电平,则无论随后如何变化,CEOUT在复位状态下均保持高电平。复位时,如果CEIN为低电平,CEOUT将保持12μs的低电平,以完成读/写操作。12μs延迟后,CEOUT将变为高电平,无论CEIN随后如何变化,复位期间输出都将保持在高电平。当CEOUT与CEIN断开时, CEOUT被上拉至OUT。片选电路的传输延时取决于驱动CEIN的源阻抗和CEOUT的容性负载。降低CEOUT的容性负载将最大限度地减小传输延时,同时应该采用低阻输出的驱动器。

  (3)手动复位输入MAX16024中的为逻辑低电平时将触发RESET。当MR为逻辑低电平时,RESET保持复位状态。MR变高后,经过最小145 ms(tRP)的超时周期后RESET解除复位。MR在内部通过30 kΩ上拉电阻连接到VCC。MR可由TTL/COMS逻辑电平或开漏/集电极输出驱动。在MR和GND之间可连接一个常开的瞬态开关,提供手动复位功能,无需外部去抖电路。如果由长电缆驱动或设备工作在嘈杂环境下,需要在MR和GND之间连接一个0.1μF的电容,以提供额外的噪声抑制功能。

  (4)电池连接指示器当进入电源备份模式时MAX160224的BATT ON输出变高,用来指示电源切换状态。

  (5)电池保鲜在第一次连接VCC之前,MAX16024的电池保鲜功能可以确保备份电池不和内部电路及OUT连接,保证最终产品在第一次使用时,连接到 BATT的备份电池是全新的。内部保鲜锁存功能可以保持闭锁状态,避免BATT在VCC第一次上电之前为OUT供电。当VCC随后关闭时,BATT开始为 OUT供电。

  (6)复住输出在上电、断电和低电压状态下MAX16024的P监控电路将触发处理器复位,以避免代码运行错误。当VCC低于复位门限时,触发RESET,并在VCC上升超过复位门限后继续保持至少145 ms(tRP)的低电平时间。MR为低电平时,也会触发RESET。

  (7)稳压器输出MAX16024器件提供1.2 V、1.8 V、25 V、3.0 V和3.3 V固定输出电压,可提供最大100mA的负载电流。同时MAX16024提供固定和可调输出电压版本,利用连接在OUT、SET和GND之间的外部电阻分压网络设置输出电压,可在1.8~525 V之间调节,将SET接GND,则选择固定输出电压版本。

  3 应用实例

  图2给出基于MAX16024的电源备份电路。

  图2的电源备份电路,MAX16024可提供典型值为10 s的短路保护。如果OUT短路至地的时问超过10 s,则可能损坏器件。采用0.1μF电容分别旁路VCC和BATT至GND。OUT和GND之间连接10μF的低ESR电容,所有电容尽可能靠近器件放置。当VCC高于VTH时,移除备份电源不会触发复位。VCC保持在复位门限以上时,电路不会进人电源备份模式。当出现短暂的负向VCC电压时,电源备份电路可以抑制短暂的扰动,提供额外的瞬态保护能力。

  在对该电路进行供电稳定性测试中,电路供电稳定,输入电压和输出电压之间呈良好的线性关系(图3);在片选复位过程中,电路输出电压过渡稳定,如图4所示。

  4 结束语

  MAX16024非常适合为存储敏感数据的存储器提供备份电源。例如静态随机存取存储器(SRAM)或实时时钟(RTC),当电源电压跌落时,通过VCC供电的稳压输出切换至备份电源。

关键字:供电  备份  稳定性  MAX16024  低功耗 编辑:金海 引用地址:基于MAX16024的低功耗设备电源备份方案

上一篇:解析:当今开关电源技术的四大趋势
下一篇:基于LPC938的高精度数控直流电流源的设计

推荐阅读最新更新时间:2023-10-18 14:49

电池供电RTU在管网监控中的应用
管网的压力、流量和流向是供水调度系统中重要的监测内容,测控终端被安装在监测现场采集管网压力、流量、流向等信息,并将信息传递到调度中心。 目前,国内水司选用的测控终端各不相同,有的选用数采模块加电台,有的选用数采模块加有线Modem,有的选用PLC加GPRS,这些设备虽然能够满足现场的需求,也存在着一些不足之处,如:电台方式维护量大、有线Modem方式费用高、普通GPRS功耗大等等。 依据水司的普遍要求,结合水司管网监控的特点,我公司设计了一款微功耗电池供电RTU,该终端将微功耗测控技术和GPRS通信技术进行了科学的整合,能够满足供水管网监控不同使用环境的要求。现将设备设计特点及使用特点介绍如下: 一、   设计特点
[嵌入式]
利用多电压架构在32位MCU上实现高性能和超低功耗待机模式
  在提高计算性能和集成更多功能的市场需求驱动下,16位和32位微控制器(MCU)的应用领域在不断扩大。电源电压降低,采用先进的CMOS制造工艺的32位微控制器实现了高性能,缩小了芯片尺寸,这些因素使电池供电的设备也在不断扩大应用范围。   不过深亚微米技术存在一个重大缺陷,就是泄漏电流非常高。这是一个严重的问题,对电量有限的电池供电应用影响特别大。为了克服这个缺陷,新的32位微控制器(包括通用微控制器)必须具有能效非常高的超低功耗模式,以延长待机使用时间。   静态电流可能是产生电池供电应用功耗的主要原因,本文主要介绍创新的STM32 ARM Cortex-M3内核微控制器如何实现低功耗模式以及最大限度降低泄漏电流
[单片机]
利用多电压架构在32位MCU上实现高性能和超<font color='red'>低功耗</font>待机模式
单位出货量回升,照亮等离子前景
  据iSuppli公司,继连续两个季度表现低迷之后,等离子显示器面板(PDP)电视出货量在2007年第三季度反弹,因其价格快速下降刺激了消费需求。   2007年第三季度全球PDP电视出货量达到300万台,比2007年第二季度增长27%,比上年同期增长15%。相比之下,2007年第二季度出货量仅增长4%,第一季度更是下降了17%。2007年上半年出货量与2006年同期持平。   有吸引力的价格和更加旺盛的销售,使等离子电视引起了消费者的注意,尤其是50英寸及更大尺寸的电视,因而增强了未来五年的销售前景。但是,消费者关注的上升目前并未使任何主要面板厂商高兴起来,也没能促使他们增加产能,他们仍然保持谨慎。   iS
[焦点新闻]
一种位置自由的低功耗无线充电系统电路设计
  一套完整的无线充电系统包括TX 端和RX 端两部分,无线充电的结构类似于一个空心变压器,能量传输通过线圈耦合的方式来实现。通常发射线圈及其驱动电路被安装在一个充电板内,接收线圈及其驱动电路则被嵌入到需充电的设备中,如智能手机等。能量传输的效率与线圈之间的距离、线圈对齐的程度、线圈方向、线圈材质、磁场屏蔽、阻抗匹配、发射频率及占空比等因素有关。其中,线圈之间的距离及对齐程度对传输效率有极大的影响。    电路原理: 采用3 个发射线圈阵列来扩展充电区域,以便获得更好的充电效率及体验。BQ500410A 以400 ms 的时间间隔依次使能3 个发射线圈,同时使能相应的COMM 反馈信号通路的模拟开关。BQ500410A 会寻找最强
[电源管理]
一种位置自由的<font color='red'>低功耗</font>无线充电系统电路设计
TI 微控制器(MCU)MSP430如何让低功耗与高性能兼得
随着现在和未来的产品变得越来越智能,我们发现需要处理的数据也日益增多。为了收集这些数据,厂商们部署了传感器网络来记录多个位置的事件,并为众多用例从不同的数据源收集许多不同类型的数据。 通过检测门窗打开等事件,家庭安防传感器能够为居民们带来安全感。工业泵上的传感器发出的数据可以帮助工厂所有者及早检测到警示信号,从而防止出现故障并降低随着时间的推移而产生的维护成本。来自基于分布式网格的传感器网络的数据甚至可以用来应对地质事件,让应急人员有更多的时间采取行动。在大多数情况下,必须将系统中记录的这类数据发送给中央节点,用于处理、分析和制定决策。要维持这个恒定的数据流,需要耗费大量的能源和时间。通过加入局部智能功能将单个传感器转换
[嵌入式]
TI 微控制器(MCU)MSP430如何让<font color='red'>低功耗</font>与高性能兼得
汽车系统的USB供电
USB  Type-C 新标准中最令人激动的一个方面是其电力传输部分。通过 USB供电 ,器件可以成功获得更多的电力,从而实现以前无法实现的功能。手机、平板电脑和笔记本电脑等便携式设备将能够更快地充电。显示器等高功率设备将能够通过相同的电缆获得电源和数据。 器件和主机的数量仍然相对较少,但正不断增加。随着USB Type-C器件的普及,消费者也希望在家中、移动办公时使用它们,尤其是在 汽车 上。 汽车系统有一套独特的要求和设计障碍,超出了USB供电的要求。表1所示为汽车系统中的典型电压。   表1 汽车系统中的典型电压 汽车系统将对输入使用保护和/或调节,以限制负载的电压。该电压通常限于高出卡车电压或为电池电压的两倍,但低于
[嵌入式]
便携式产品低功耗电路设计的综合考虑
  如今,集成电路和计算机系统正变得越来越复杂。为了适应这一变化,设计师需要在主要设计参数表中考虑功耗的要求。低功率逻辑电路的标准被定义为每一级门电路功耗小于1。3uW/MHz,而在模拟电路中被定义为小于5mW。最终用户认为,低功率系统应该满足低功耗的要求。   对于总体系统设计来说,功耗在设计中的地位已变得越来越重要,这是电子工业发展的必然趋势。电子工业发展总的趋势是提供更小、更轻和功能更强大的最终产品。目前许多产品领域中还出现了无线和便携式的要求,从功率观点看设计任务将变得更加艰巨。电池供电产品性能的目标,就是单个或一组充电电池能维持设备连续几天的工作,比如现已广泛应用的Walkman单放机或蜂窝电话。   另外,
[手机便携]
飞兆推出业界首个电流检测点火IGBT 降低功耗达30%
FGB3040CS能够降低功耗达30% 飞兆半导体公司 (Fairchild Semiconductor) 推出业界首颗电流检测用点火IGBT器件FGB3040CS,可以在应用中省去用于检测大电流的检测电阻,从而将功耗降低30% 并减少由此带来的热量。FGB3040CS具有电流检测功能,能以小型的低电流检测电阻替代高功率的检测电阻,成功简化系统元件的需求及降低总体成本。FGB3040CS采用EcoSPARK 技术设计,提供了业界最高能量密度的点火IGBT。这项技术可让芯片尺寸缩减到能够装入D-Pak封装中而不会影响性能。 FGB3040CS的主要优势包括: - 与现有的解决方案相比,系统功耗降低30% - 采用E
[新品]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved