电源设计中的电容应用实例

最新更新时间:2011-07-05来源: 互联网关键字:电容应用 手机看文章 扫描二维码
随时随地手机看文章

电源往往是我们在电路设计过程中最容易忽略的环节。其实,作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。

这里,只介绍一下电路板电源设计中的电容使用情况。这往往又是电源设计中最容易被忽略的地方。很多人搞ARM,搞DSP,搞FPGA,乍一看似乎搞的很高深,但未必有能力为自己的系统提供一套廉价可靠的电源方案。这也是我们国产电子产品功能丰富而性能差的一个主要原因,根源是研发风气吧,大多研发工程师毛燥、不踏实;而公司为求短期效益也只求功能丰富,只管今天杀鸡饱餐一顿,不管明天还有没有蛋,“路有饿死骨”也不值得可惜。

言归正转,先跟大家介绍一下电容。

大家对电容的概念大多还停留在理想的电容阶段,一般认为电容就是一个C。却不知道电容还有很多重要的参数,也不知道一个1uF的瓷片电容和一个1uF的铝电解电容有什么不同。实际的电容可以等效成下面的电路形式:

 

C:电容容值。一般是指在1kHz,1V 等效AC电压,直流偏压为0V情况下测到的,不过也可有很多电容测量的环境不同。但有一点需注意,电容值C本身是会随环境发生改变的。

ESL:电容等效串联电感。电容的管脚是存在电感的。在低频应用时感抗较小,所以可以不考虑。当频率较高时,就要考虑这个电感了。举个例子,一个0805封装的0.1uF贴片电容,每管脚电感1.2nH,那么ESL是2.4nH,可以算一下C和ESL的谐振频率为10MHz左右,当频率高于10MHz,则电容体现为电感特性。

ESR:电容等效串联电阻。无论哪种电容都会有一个等效串联电阻,当电容工作在谐振点频率时,电容的容抗和感抗大小相等,于是等效成一个电阻,这个电阻就是ESR。因电容结构不同而有很大差异。铝电解电容ESR一般由几百毫欧到几欧,瓷片电容一般为几十毫欧,钽电容介于铝电解电容和瓷片电容之间。

下面我们看一些X7R材质瓷片电容的频率特性:

 

当然,电容相关的参数还有很多,不过,设计中最重要的还是C和ESR。

下面简单介绍一下我们常用到的三种电容:铝电解电容,瓷片电容和钽电容。

1)铝电容是由铝箔刻槽氧化后再夹绝缘层卷制,然后再浸电解质液制成的,其原理是化学原理,电容充放电靠的是化学反应,电容对信号的响应速度受电解质中带电离子的移动速

度限制,一般都应用在频率较低(1M 以下)的滤波场合,ESR主要为铝萡电阻和电解液等效电阻的和,值比较大。铝电容的电解液会逐渐挥发而导致电容减小甚至失效,随温度升高挥发速度加快。温度每升高10度,电解电容的寿命会减半。如果电容在室温27 度时能使用10000小时的话,57度的环境下只能使用1250小时。所以铝电解电容尽量不要太靠近热源。

2)瓷片电容存放电靠的是物理反应,因而具有很高的响应速度,可以应用到上G的场合。不过,瓷片电容因为介质不同,也呈现很大的差异。性能最好的是C0G材质的电容,温度系数小,不过材质介电常数小,所以容值不可能做太大。而性能最差的是Z5U/Y5V材质,这种材质介电常数大,所以容值能做到几十微法。但是这种材质受温度影响和直流偏压(直流电压会致使材质极化,使电容量减小)影响很严重。下面我们看一下C0G、X5R、Y5V三种材质电容受环境温度和直流工作电压的影响。

 

 

可以看到C0G的容值基本不随温度变化,X5R稳定性稍差些,而Y5V材质在60度时,容量变为标称值的50%。

 

可以看到50V 耐压的Y5V 瓷片电容在应用在30V 时,容量只有标称值的30%。陶瓷电容有一个很大的缺点,就是易碎。所以需要避免磕碰,尽量远离电路板易发生形变的地方。

3)钽电容无论是原理和结构都像一个电池。下面是钽电容的内部结构示意图:

 

钽电容拥有体积小、容量大、速度快、ESR低等优势,价格也比较高。决定钽电容容量和耐压的是原材料钽粉颗粒的大小。颗粒越细可以得到越大的电容,而如果想得到较大的耐压就需要较厚的Ta2O5,这就要求使用颗粒大些的钽粉。所以体积相同要想获得耐压高而又容量大的钽电容难度很大。钽电容需引起注意的另一个地方是:钽电容比较容易击穿而呈短路特性,抗浪涌能力差。很可能由于一个大的瞬间电流导致电容烧毁而形成短路。这在使用超大容量钽电容时需考虑(比如1000uF 钽电容)。

从上面可以了解到不同的电容有不同的应用场合,并不是价格越高越好。

下面讲一下电源设计中电容的作用。

在电源设计应用中,电容主要用于滤波(filter)和退耦/旁路(decoupling/bypass)。滤波主要指滤除外来噪声,而退耦/旁路(一种,以旁路的形式达到退耦效果,以后用“退耦”代替)是减小局部电路对外的噪声干扰。很多人容易把两者搞混。下面我们看一个电路结构:

 

图中开关电源为A和B供电。电流经C1 后再经过一段PCB 走线(暂等效为一个电感,实际用电磁波理论分析这种等效是有误的,但为方便理解,仍采用这种等效方式。)分开两路分别供给A 和B。开关电源出来的纹波比较大,于是我们使用C1对电源进行滤波,为A和B提供稳定的电压。C1需要尽可能的靠近电源放置。C2和C3均为旁路电容,起退耦作用。当A在某一瞬间需要一个很大的电流时,如果没有C2 和C3,那么会因为线路电感的原因A端的电压会变低,而B端电压同样受A端电压影响而降低,于是局部电路A的电流变化引起了局部电路B的电源电压,从而对B电路的信号产生影响。同样,B的电流变化也会对A 形成干扰。这就是“共路耦合干扰”。

增加了C2后,局部电路再需要一个瞬间的大电流的时候,电容C2可以为A暂时提供电流,即使共路部分电感存在,A端电压不会下降太多。对B的影响也会减小很多。于是通过电流旁路起到了退耦的作用。

一般滤波主要使用大容量电容,对速度要求不是很快,但对电容值要求较大。一般使用铝电解电容。浪涌电流较小的情况下,使用钽电容代替铝电解电容效果会更好一些。从上面的例子我们可以知道,作为退耦的电容,必需有很快的响应速度才能达到效果。如果图中的局部电路A 是指一个芯片的话,那么退耦电容要用瓷片电容,而且电容尽可能靠近芯片的电源引脚。而如果“局部电路A”是指一个功能模块的话,可以使用瓷片电容,如果容量不够也可以使用钽电容或铝电解电容(前提是功能模块中各芯片都有了退耦电容—瓷片电容)。滤波电容的容量往往都可以从开关电源芯片的数据手册里找到计算公式。如果滤波电路同时使用电解电容、钽电容和瓷片电容的话,把电解电容放的离开关电源最近,这样能保护钽电容。瓷片电容放在钽电容后面。这样可以获得最好的滤波效果。

 

退耦电容需要满足两个要求,一个是容量需求,另一个是ESR需求。也就是说一个0.1uF的电容退耦效果也许不如两个0.01uF电容效果好。而且,0.01uF电容在较高频段有更低的阻抗,在这些频段内如果一个0.01uF电容能达到容量需求,那么它将比0.1uF电容拥有更好的退耦效果。

很多管脚较多的高速芯片设计指导手册会给出电源设计对退耦电容的要求,比如一款500多脚的BGA封装要求3.3V电源至少有30个瓷片电容,还要有几个大电容,总容量要200uF以上




关键字:电容应用 编辑:冰封 引用地址:电源设计中的电容应用实例

上一篇:机载计算机电源的小型化设计
下一篇:路灯照明系统中智能稳压电源设计应用

推荐阅读最新更新时间:2023-10-18 15:25

超级电容器在汽车启动中的应用
l 引言   蓄电池是汽车中的关键电器部件,其性能直接影响汽车的启动。现在的汽车启动无一例外地采用启动电动机启动方式。在启动过程中特别是在启动瞬间,由于启动电动机转速为零,不产生感生电势,故启动电流:I=E/(RM+RS+RL);其中:E为蓄电池空载端电压,RM为启动电动机的电枢电阻,RS为蓄电池内阻、RL为线路电阻。由于RM、RB、RL均非常低,启动电流非常大。例如用12 V、45 Ah的蓄电池启动安装1.9 L柴油机的汽车,蓄电池的电压在启动瞬间由12.6 V降到约3.6 V,启动过程的蓄电池电压波形如图1所示。启动瞬时的电流达550 A,约为蓄电池的12C的放电率 启动过程的蓄电池电流波形如图2所示。电流传感器的电流
[网络通信]
经验谈之解决电容式触摸屏应用中的噪声问题
触摸屏设备可能会在一天中受到许多不同噪声源的干扰,既包含内部 噪声 也包含外部噪声。充电器和显示器噪声是当今两种最常见的问题噪声源。随着市场上的充电设备变得越来越轻薄、噪声越来越大,这种挑战只会变得更加难以管理。此外,许多其他日常物件也会产生噪声,引起干扰,如无线电信号、交流电源乃至荧光灯镇流器等。在存在噪声的情况下,低性能电容式触摸系统报告的位置可能失真,从而影响准确度和可靠性。 今天的触摸屏控制器采用各种不同的方法来提高信噪比,并从噪声中过滤出不良数据,这些方法包括片上生成高压发射信号、专业化硬件加速、高频发射、自适应跳频技术以及饱和防治技术。但是,触摸技术不断持续发展,涉及的方面包括:触摸控制器如何利用上述特性,如何动态地适
[电源管理]
经验谈之解决<font color='red'>电容</font>式触摸屏<font color='red'>应用</font>中的噪声问题
东芝为小型移动应用推出低电容SPDT总线开关集成电路
东京—东芝公司(TOKYO:6502)今天宣布为需要快速数据处理的数字设备推出低电容SPDT(单刀双掷)总线开关集成电路“TC7SB3157DL6X”。批量生产定于今年11月开始。 数字设备需要使用高速总线开关集成电路来处理日益提高的数据量。“TC7SB3157DL6X”可降低开关接线端子电容,以减少信号升降两端的迟钝,让它们能够应用于高速双向通信和数据交换。该产品采用小尺寸通用背电极型封装MP6B,可以应用于移动数字设备等需要高密度安装的应用。 新产品的主要特性 通过降低开关接线端子电容实现高速传输 开关接线端子导通电容:CI/O(标准值):15pF @VCC=5.0V 导通电阻RON(标准值) 4.0Ω @V
[电源管理]
PICl6LF874单片机在电容测量拈中的应用
电容式传感器已广泛应用于工业、医学、军事等领城。但目前大部分电容测量方法集成化水平低、精度低,因而对电容特别是对微小电容的精确测量始终是一个很重要的内容。振荡法电路结构简单、抗干扰能力差,板间内电容影响测量结果;电桥法利用电桥平衡原理测量电容,测量结果受桥臂电容性能影响较大。本文用到美国 Micmchip公司PICl6LF874单片机,该单片机采用RISC精简指令集、哈佛总线结构、流水线指令方式,具有抗干扰能力强、功耗低、高性能、价格低等特性。 1 PICl6LF874单片机 PICl6系列单片机采用精简指令集(Reduced Instruction Set Computer,RISC)结构,突破了传统单片机对PC机在
[单片机]
PICl6LF874单片机在<font color='red'>电容</font>测量拈中的<font color='red'>应用</font>
人体接触应用中的电容检测
电容检测不仅用在您的智能手机中;在必须与人体皮肤接触的医疗设备等产品中,它也有用武之地。本文介绍如何使用电容检测来确定设备表面与用户皮肤的接触质量。 容性检测技术在传统的人机界面应用中继续受到青睐,例如笔记本电脑触控板、MP3播放器、触摸屏显示器和近程检测器等。除了利用容性传感器取代机械按钮外,用一点点想象力,再加上人机界面设计的基本原理,将会使很多其它应用也能利用这一技术。图1所示为一些应用概念示例,这些概念可以通过采用人体接触检测得到完善。 图1. 使用容性传感器电极的器件 对于图1中所示的器件,若能在启动器件或进行测量之前先了解器件与皮肤之间的接触质量等相关信息,往往较为有利。这些器件包括需要紧靠皮肤的医用探针、生物电
[测试测量]
人体接触<font color='red'>应用</font>中的<font color='red'>电容</font>检测
电力电容器保护器的应用技巧
电力 电容器 保护器是可与切换电容器接触器,无功补偿控制器,熔断器等组成电力电容器控制系统,主要作为电力电容器及补偿补偿电路中出现的过流、短路,涌流,谐波,过压等故障进行保护,电力电容器保护器作为过流保护的新型产品填补了国内电力电容器保护器的空白,可广泛应用于功率因数自动补偿控制电路。   电力电容器保护器的应用注意事项 1、保护器工作电源应与标称电压相符。 2、保护器接线端子接线应正确无误,接触良好。 3、应定期进行检查,确保可靠运行。 4、保护器动作指示后,必须仔细观察故障所示类型,仔细检查故障原因,在正确处理故障后方可再次运行。 5、电容器投入运行时,运行指示灯处于闪烁状态,若在很短时间内出现过流跳闸,应用钳形电流表测量一
[电源管理]
电力<font color='red'>电容</font>器保护器的<font color='red'>应用</font>技巧
Vishay推出面向汽车和工业应用的新款径向铝电容
日前,Vishay Intertechnology, Inc.宣布,推出新系列汽车级径向铝电容器---160 RLA。新电容器可在+150℃高温下工作,在+150℃下使用寿命长达2000小时,为汽车和工业应用提供了高稳定性和高可靠性。 Vishay BCcomponents 160 RLA系列有从10mm x 12mm到18mm x 35mm共10种外形尺寸。这些电容器通过AEC-Q200认证,在100kHz下的阻抗低至23m ,在+150℃下的额定纹波电流高达2000mA,提高了可靠性,在16V~50V电压范围内的电容量从33 F到3300 F。 160 RLA系列器件是极化的铝电解电容器,采用非固态电解
[电源管理]
Vishay推出面向汽车和工业<font color='red'>应用</font>的新款径向铝<font color='red'>电容</font>器
电容式靶式流量计在煤气站发生炉煤气流量测量的应用
目前,机械、冶金、建材、陶瓷行业的许多企业,大多都建有自己的煤气站,产出的煤气供其加热或烧制产品燃用。煤气站中针对煤气的热工测量仪表较多,其中煤气温度和压力的检测一直备受设计单位及建站企业的重视,因为这两项指标直接关系系列煤气发生炉炉况的控制和煤气的质量。近几年,由于市场经济的冲击,各企业纷纷开始注意降低能耗,最大限度地减少其产出成本,于是煤气流量的检测也开始受到同样的重视。企业通过对煤气流量的计量,核算出生产单位体积煤气所消耗的燃料、原料和动力量,从而估算出煤气生产成本,以便进行经济核算。用气单位、部门的煤气计量控制,燃气成本核算,同样达到了控制成本,节能降耗的目的。 1. 发生炉煤气流量检测的特点及对其测量仪表的相应要求首先,
[测试测量]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved