1. 背景:芯片厂扩产
按照晶元公司的预测,(1)如果led液晶电视占液晶电视市场份额的10%,则目前全世界的LED芯片厂的产能将供不应求(这一预测现在已被证实);(2)照明市场更大,如果全世界的白炽灯100%的被LED灯替换,则LED照明对LED芯片的需求是LED液晶电视对LED芯片的需求的100倍,即使10%的白炽灯被LED灯替换,对LED芯片的需求也是LED液晶电视需求的10倍。比较乐观的估计是,在未来1至2年内,LED将大举进入照明。
因此,一方面,各个LED芯片公司都在扩产,另一方面,其他资金也大量进入LED芯片产业。例如,韩国的三星公司采购了大量的外延设备MOCVD。
瓶颈在于,外延设备厂的扩产速度有限(据报道,世界两大MOCVD生产厂家预计到今年底,产能增加1倍),蓝宝石衬底厂的扩产速度有限(目前,合格的蓝宝石衬底的生产厂家的数量屈指可数)。外延设备厂和蓝宝石衬底厂的扩产速度远远达不到LED照明对LED芯片的需求的增加的速度。其他的芯片设备和原材料的供应都会出现紧张。
如何在未来的几年内扩大设备厂的产能和原材料厂的产能以满足LED照明对LED芯片的需求呢?
2. 一种缓解的方法:大电流驱动的LED芯片
缓解的方法之一是:研发并在1至2年内生产可以采用大电流驱动的LED芯片,使得一个芯片发出的光通量相当于数个传统的LED芯片的光通量。
大电流驱动的LED芯片的优势如下:
(1)相当于LED芯片的价格降低到原有芯片的几分之一,更有利于LED照明的推广。
(2)相当于现有产能提高了几倍,而没有增加极其昂贵的设备投资,降低风险。
(3)提高了新扩产的设备的生产能力。
为了更直观的理解这一缓解的方法,引入两种芯片产能的定义:
(A)“芯片产能”。
(B)“lm产能”,即,采用lm数量来计算芯片厂的产能,因为照明灯具的要求是采用lm(或lux)数来计算,而不是灯具所使用的芯片的数量来计算,这有些像发电厂的产能是按发电量计算的一样。
例如,一个芯片厂的“芯片产能”是:月产100 kk的45mil芯片。
如果每个芯片封装后在350mA驱动下发出100 lm的光,可以说该厂的“lm产能”是10 kkk lm。但是,如果每个芯片封装后在更大电流驱动下发出300 lm的光,可以说该厂的“lm产能”是30 kkk lm。然而,按照350mA驱动的100 lm的LED芯片,为了达到30 kkk lm的“lm产能”,则需要的“芯片产能”是:月产300 kk的350mA驱动的45mil芯片。
对于上面的例子,这相当于:
(1)大电流驱动的芯片的每lm光通量的成本减低到原来的1/3;
(2)芯片厂家的“lm产能”提高了3倍,但是,芯片厂家的“芯片产能”没有增加,因而,没有增加数目巨大的设备投资,节省了扩产月产200 kk 的“芯片产能”的巨额投资;
(3)也节省了月产200 kk的350mA驱动的芯片的外延生长和芯片工艺的原材料费用。
即缓解了对设备厂商的压力,也缓解了对原材料(包括蓝宝石衬底)的需求。
如果能采用更大的电流(例如,数安培量级的电流)驱动,则优势更大。
韩国的三星公司采购了大量的外延设备这一消息被多次引用,但是,没有引起广泛注意的是,三星公司正在与他人合作研发大电流驱动LED芯片,并且已在外延层面进行了专利布局。届时,不但三星公司的外延设备的“芯片产能”大的惊人,其“lm产能”则更是惊人——数倍于350mA驱动的LED芯片的“lm产能”。没有大电流驱动芯片的技术的厂家则更难望其项背。
3. 大电流驱动的LED芯片的发展
据透露,Cree公司的1.5A电流驱动的芯片正在进行老化试验,截至目前,6000小时只衰减7%。
我们知道:可以用大电流驱动的LED芯片必须在:(A)外延层面、(B)芯片层面、(C)封装层面,满足下面的条件:
(A)外延层面:关键的问题是要解决在大电流驱动时芯片的量子效率下降(efficiency droop)问题。一些公司正在研发解决效率下降的方法。例如,美国佛吉尼亚大学公开了试验结果:采用掺杂镁的InGaN 阻挡层代替无掺杂的GaN 阻挡层,在900A/cm2电流密度下(相当于采用9A电流驱动1mm2芯片),得到最大的外量子效率。作为对比,目前市场上的常见的大功率1mm2的LED芯片的电流密度只有35A/cm2。最近,该大学公开了他们对大电流驱动的非极化LED的研发结果(见图1)。
图1
而且,佛吉尼亚大学还发现,对于电流在P-GaN里横向流动,即,横向结构的LED芯片,电流拥塞会造成额外的量子效率下降。
(B) 芯片层面(详见“中国半导体照明产业发展年鉴(2008)):必须满足下面条件:有效的向LED芯片引入大电流的方法,电流分布均匀,没有电流拥塞,芯片的散热性能优良。
3维垂直结构LED芯片比较容易满足上述的条件,一款3维垂直结构LED芯片的电极如下图所示:
在上图中,有4个条形电极,因此,有4个电流引入点,即,电流从N金属分别通过4个电流引入点流入4个条形电极,并进而流入LED薄膜,从每一个电流引入点引入的电流等于总电流的1/4。因此,在电流引入点附近的电流密度较小,不容易在电流引入点的附近产生电流拥塞。对于更大的电流,可以采用多个条形电极,而不会有太多的挡光。
3维垂直结构的LED芯片在把大电流引入芯片方面具有优势。
(C)封装层面:必须把大电流产生的热量有效的散掉。
总之,为了尽快的推进LED照明的进程,并满足LED照明对LED芯片的需求,一方面要考虑到芯片设备厂和原材料厂的扩产的速度,另一方面要用尽量少的投资增加LED芯片的产能,采用大电流驱动的芯片能更好的满足这两方面的需求,而3维垂直结构的LED芯片更适合大电流驱动!
上一篇:LED液晶电视的特性
下一篇:降低高亮度LED成本的晶圆粘结及检测
推荐阅读最新更新时间:2023-10-18 15:11
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况