目前采用的LED大屏幕显示系统的控制电路,大多由单个或多个CPU及复杂的外围电路组成,这种电路设计,单片机编程比较复杂,整个电路的调试比较麻烦,可靠性和实时性很难得到保证。针对这种情况,介绍一种基于cyclone EP1C6的LED大屏幕设计方案,该设计方案无须外挂FLASH ROM和RAM,无须任何外部功能电路,所有功能均由一片cyclone EP1C6和一片单片机SPCE061A来实现,具有数据处理速度快、可靠性高的特点。其中FPGA内部双口RAM的运用,为不同总线间的数据通信提供了一个新的解决方案。
1 系统结构及功能概述
设计对象是一块具有192×128个红色LED点阵的电子屏。整块电子屏是模块化的结构,每4个16×16的点阵块为一个单元,共3×8个这样的单元。屏上要求连续显示5屏内容,且每屏具有上下左右移动等动画效果,实际应用中主控制室距离电子屏约为200米。结合设计对象的要求和大屏幕设计的特点,系统结构框图如图1所示。
LED大屏设计系统由三个主要单元组成:上位机图象/文字编辑与发送部分单元、主控板单元、LED电子屏。系统上位机由一台PC机来控制,主要是编辑、发送图象/文字信息到主控板,而主控板对这些数据进行处理后发送到大屏幕上显示出来。
2 系统硬件设计
系统硬件设计主要是对主控板的设计,主控板的主要功能包括:数据通讯、数据存储、数据处理、扫描控制等。传统LED大屏设计由作为数据存储器的FLASH ROM和数据处理缓存器的RAM、CPU和可编程逻辑器件FPGA/CPLD、作为数据扫描缓冲区的RAM组成,其结构如图2所示。
传统主控板硬件设计需要较多的外围器件(有的设计中还不止一个CPU和CPLD),不仅硬件结构和连线复杂,而且设计成本较高。此外,由于LED大屏幕数据量很大,各个分立存储器之间、单片机与FPGA/CPLD之前数据实时可靠的传输也是一个问题。为解决这些问题,主控板硬件电路的设计选用一片凌阳单片机SPCE061A和一片FPGA cyclone EP1C6,其结构框图如图3所示。
2.1 cyclone EP1C6和SPCE061A简介
cyclone EP1C6是Altera推出的一款高性价比FPGA,工作电压3.3V,内核电压1.5V。采用0.13μm工艺技术,全铜SRAM工艺,其密度为5980个逻辑单元,包含20个128×36位的RAM块(M4K模块),总的RAM空间达到92160位。内嵌2个锁相环电路和一个用于连接SDRAM的特定双数据率接口,工作频率高达200MHz[3]。
SPCE061A是凌阳科技推出的一款16位微控制器,内嵌32K字FLASH和2K字SRAM,并集成了ICE仿真电路接口﹑通用I/O端口﹑定时器/计数器﹑中断控制﹑CPU时钟﹑模数转换器A/D﹑DAC输出﹑通用异步串行输入输出接口、串行输入输出接口﹑低电压检测/低电压复位﹑看门狗等功能。CPU最高可工作在49MHz的主频下,较高的处理速度使SPCE061A能够非常容易、快速地处理复杂的数字信号[1]。
2.2主控板结构及功能
主控板结构如图3所示,上位机发送的数据通过双绞传送到RS422接收模块[2],经转换后送至单片机,由单片机的IOB7口以UART中断的方式接收上位机发送的数据。单片机将接收的串口数据以两个字节为单位逐一写入内置的FLASH中。单片机内部的2K字SRAM在此作为一个缓存区,每次单片机要向FPGA中写一屏新的数据时,先按特定的地址从FLASH中读出数据并存放到SRAM中,再将SRAM的数据并行写到FPGA的双口RAM中。
FPGA在其内部配置一个双口RAM缓存单片机写入的数据,同时将这些数据按照大屏的结构和扫描电路的特点,从双口RAM中有选择性地读出,并将读出的数据由并转串,按照一定的时序对大屏点阵进行、列扫描,这个时序也是由FPGA产生的。扫描数据和时序控制信号从FPGA的I/O口输出后,经过一个由74LS245构成的隔离驱动电路送至大屏幕。
2.3基于FPGA的双口RAM的配置
基于FPGA的双口RAM的配置是本设计的独特之处。RAM作为中介将单片机送来的数据在LED电子屏上显示出来,由于数据显示是一种动态扫描方式,若采用一个RAM 区,单片机在写RAM 时,FPGA只能处于等待状态,FPGA读RAM时,单片机写数据也无法同时进行,导致屏幕刷新频率降低,动态扫描不连续,影响屏幕的显示效果。因此设计了两个同样大小的RAM 区:A区和B区。当单片机写A区时, FPGA读B区的数据,单片机写B区时,FPGA读A区的数据。此外,由于FPGA扫描模块可以达到很高的扫描速率,而单片机的运行速率则相对较低,且两个模块间有大量的数据交换,为此选择高速双口RAM,一方面保证单片机和FPGA同时读写数据,另一方面保证了数据的处理速度。
cyclone EP1C6提供了20个具有异步﹑双端口﹑带寄存器输入口﹑可选择的带寄存器输出口的存储模块—M4K模块,每个M4K模块的存储容量为4Kbit。在QUARTUS软件中进行简单的设置,就可以将M4K模块配置成双口RAM,数据和地址的位宽可根据实际需要进行选择。本文设计的RAM可容纳两屏的数据,数据位宽为16位,地址为12位,其中地址的最高位作RAM分区用,每个区存储一屏的数据,两屏读写同时进行,双口RAM的配置如图4所示。
其中wren是单片机往FPGA中写入数据的写使能信号,wraddress[11..0]是写的地址信号, wrclock是写时钟,data[15..0]是写的数据,rdaddress[11..0]是读的地址信号,rdclock是读数据的时钟信号,q[15..0]是读出的数据。
2.4基于FPGA的独立扫描单元
点阵模块是红色LED共阴模块,4块16×16点阵模块连接成64×16点阵作为一个单元进行控制,整个大屏有3×8个这样的单元。将LED的公共接口作为行控制,行扫描信号同时控制着一行中多个LED的通断,以每个LED流过的电流为10mA计算,一个单元有64列,行扫描信号至少得提供1A左右的电流,因此,在扫描信号送到LED之前必须经过一个三极管以提高驱动能力。三极管选用高速中功率达林顿管TIP127,它的集电极吸收电流最大可达5A,保证行驱动能力。由于点阵的每行需要一个三极管驱动,所以一个64×16的单元块需要16个TIP127。行扫描电路采用带锁存的移位寄存器74LS595来控制,每片74LS595控制 8行点阵的选通与否。由于采用的扫描方式为每隔8行数据同时扫描,一片74LS595每次只能点亮一行的数据,每行点亮的时间相等即占空比为1/8,因此屏幕亮度非常均衡。
列扫描电路的功能是把要显示的行对应的列数据送到LED的阴极,列扫描也是由74LS595控制的。本文设计的屏幕的硬件结构特点是:每8行LED的阴极是连在一起的,每片74LS595控制8列数据,每隔8行同时扫描,对于一个64×16的点阵单元,共需要8×2个74LS595控制,每行上的74LS595都是级联起来的。每完成一次列扫描,FPGA都要输出一个锁存信号给74LS595以锁存列数据,接着输出行扫描信号点亮对应的行,再对行扫描数据进行锁存,如此循环往复实现整个大屏幕的动态实时显示功能[4]。
由于FPGA在行列扫描之前已经对数据进行并串转换,数据都是串行输出的,每隔8行同时扫描,整个屏幕行扫描只需占用1个I/O口,列扫描只需占用16个I/O口,从而大大减少了对I/O的占用。采用FPGA设计扫描逻辑,扫描的关键不在是硬件连接,而是对芯片资源的配置。
3 软件设计
系统的软件设计由三部分组成:上位机图象/文字编辑与发送软件设计,单片机控制单元软件设计,FPGA控制单元软件设计。
3.1 上位机软件设计
上位机的图象/文字编辑与发送软件由Visual Basic编写,只须在界面中将屏幕大小设置为192×128,串口选择COM1或COM2,波特率设置为9600,设置每屏起始地址和要发送的屏数,调入包含相关信息的文件,点击“发送”按钮即可。该软件适用于任何大小彩色/单色屏,提供了丰富的图形/文字编辑﹑修改功能,也可以直接调用WINDOWS中的16色画图文件(*.bmp)。
3.2 单片机控制单元软件设计
单片机控制单元的软件设计主要实现三大功能:串行数据接收和存储、数据输出和图象显示方式变换。串行数据接收部分主要是通过UART中断接收并保存数据。图象显示方式变换部分实现图象的变换如上移、下移、左移、右移等以实现丰富多彩的图象显示效果。单片机软件设计是在凌阳科技的集成开发环境unSP IDE下完成的,主要由一个C文件和一个ASM文件组成,C文件包括5屏数据的循环送显和图像显示方式变换,汇编文件包括中断服务子程序和其他函数调用的子程序。
3.3 FPGA控制单元软件设计
FPGA控制单元的设计是在QUARTUSII环境下完成,并用硬件描述语言VHDL描述,主要功能是配置双口RAM、设计扫描控制电路。该单元的软件设计模块如图5所示。
双端口RAM的配置完全通过在QUARTUS环境中设置菜单实现,配置完成后将自动生成一个VHDL文件,描述双口RAM的内部逻辑功能,双口RAM在整个程序设计作为一个元件调用。
基于FPGA的扫描模块的软件设计如下:首先对FPGA总时钟clk进行64分频得到clk1,clk1的低电平其间FPGA读取双口RAM的数据,每4个clk周期读一个16位的数据,共读出16个数。clk1的高电平期间FPGA进行列扫描,每2个clk周期同时输出16个数的1位,共32个周期将这16个数由并转串输出到16根数据线上,由于单片机写RAM的速度低于FPGA对数据的处理速度,剩下的32个clk周期用于等待单片机完成一个区的写操作。12个clk1周期后,一行的数据全部扫描完毕,FPGA输出一个列锁存信号给74LS595锁存这些数据,同时输出行扫描信号和行锁存信号,接着扫描第二行,由于采用16根数据线进行隔8行扫描,整个LED电子屏128行只要完成8次行扫描即可,时序如图6所示。
5 结束语
通过采用自顶向下的设计思想,运用EDA技术实现FPGA内部双口RAM的配置和扫描控制电路的设计,将复杂的系统设计集成在一起,只需一片FPGA就可以实现所需的功能,高集成度带来的不仅是成本降低,还提高了系统的稳定性和可靠性。基于 cyclone EP1C6 的LED 大屏设计方案已成功应用于我院的LED图文发布电子屏,实践证明:本系统能以多种播出方式显示各种字体和型号的文字和图形信息,与同类设计相比,画面清晰、性能稳定、操作使用简单,具有很好的应用前景。
上一篇:LCD控制器的设计和实现
下一篇:MAX7219驱动LED显示器显示连续数的方法
推荐阅读最新更新时间:2023-10-18 15:49
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC