LED电视普通照明灯具通常采用脉冲宽度调制(PWM)技术实现LED的恒流供电和调光功能,因此会产生一定程度的无线电骚扰和谐波。本文通过对部分LED灯具的测试和研究,掌握LED灯具在使用中可能产生电磁干扰的相关数据,并提出相应的解决措施。
1 原理和目的
LED光源是一种低压直流器件,因此,LED灯具需要有一个能将220 V交流电转换成符合LED工作要求低压直流的电源,但是舞台和影视用的灯具又需要具有调光功能,因此,其电源更为复杂。目前演播室用LED灯具配置的电源装置其主流模式是:
(1)前级采用普通脉冲宽度调制(PWM)的开关电源,作为低压直流电源,开关频率通常为几十千赫兹。
(2)后级再以斩波方式,进行低频脉冲宽度调制,用调节占空比的方式来调节灯具的亮度。这一部分电路通常为灯具厂自行开发,开关频率各厂差异较大。通常为数百赫兹到几十千赫兹不等。
在脉冲宽度调制的工作方式中,电源装置对电流的斩波会产生高次谐波,其对剧场和演播室中的音、视频系统和其他弱电系统产生无线电骚扰,可能影响其他设备的正常工作。此外,由于电源装置中的整流电路和电容滤波电路会使工频电流发生畸变,产生的低次谐波会对电网造成污染,影响其他电气设备运行。
因此,需要对LED灯具进行一系列的测试:按国标GB17743-2007《电气照明和类似设备的无线电骚扰特性的限值和测量方法》进行测试,测量其无线电骚扰特性是否满足该标准的要求;按国标GB 17625.1-2003 《电磁兼容 限值 谐波电流发射限值(设备每相输入电流≤16A)》进行测试,测试其谐波电流是否满足该标准的要求。
通过本课题的实验和研究,了解LED灯具在演播室使用中可能产生电磁干扰的相关数据,并提出相应的解决措施。
2 实验内容和方法
2.1 实验条件
本研究需要专业的各种电磁兼容测试设备,如电源分析仪、人工电源网络、传导测试接收机、辐射干扰接收机和三环天线等,有的测试还需要在电波暗室中进行,因此,必须委托经国家相关部门批准的专业检测机构进行检测。
2.2 试验用灯具
试验用灯具共有2类5个型号。每个型号1个灯具,共5个灯具。详见表1。
表1 试验用灯具类型和编号
2.3 实验内容
(1)按国标GB 17743-2007要求,找出调光过程中产生的最大骚扰点,测量该点的无线电骚扰值。
(2)按国标GB 17625.1-2003要求,将灯具在最小功率和最大功率之间分为5个相等的级段,测试各级段的谐波分量。
2.4 实验方法和步骤
先将待测的灯具老化100小时,待灯具的参数稳定之后,再送检。
2.4.1 无线电骚扰测试
2.4.1.1 传导骚扰电压测试
按国标GB 17743-2007的要求在灯具电源端和控制端进行测试。
(1)灯具电源端测试按以下5个频段进行:9 kHz ~50 kHz;50 kHz ~ 150 kHz;150 kHz ~ 0.5 MHz;0.5 MHz~ 5.0 MHz;5.0 MHz ~ 30 MHz。
(2) 灯具控制端测试按以下2个频段进行:150 kHz ~0.5 MHz;0.5 MHz ~ 30 MHz。
2.4.1.2 辐射电磁骚扰测试
按国标GB 17743-2007的要求进行测试。
按国标GB 17743-2007的要求进行测试。
(1)9 kHz ~ 30 MHz频率范围测试按以下4个频段进行:9 kHz ~ 70 kHz;70 kHz ~ 150 kHz;150 kHz ~3.0 MHz;3.0 MHz ~ 30 MHz。图1为其测试装置示意图。
图1 9 kHz ~ 30 MHz频率范围辐射电磁骚扰测试装置示意图
(2) 在电波暗室中,对30 MHz ~ 300 MHz频率范围测试按以下2个频段进行:30 MHz ~ 230 MHz;230 MHz~ 300 MHz。图2为30 MHz ~ 300 MHz频率范围辐射电磁骚扰测试装置示意图。
图2 30 MHz ~ 300 MHz频率范围辐射电磁骚扰测试装置示意图
以上测试的无线电骚扰特性限值见GB 17743-2007。
2.4.2 谐波测试
按国标GB 17625.1-2003中对C类设备以及内置调光器灯具的要求测试灯具的谐波分量,在最小功率和最大功率之间分为5个相等的级段,即在20%、40%、60%、80%和100%功率条件下测试各谐波分量,测试谐波次数n的范围为:
n = 2、3、5、7、9以及11 ≤ n ≤ 39(仅有奇次谐波)
图3为谐波电流测试装置示意图。
图3 谐波电流测试装置示意图
以上测试的谐波电流发射限值见GB 17625.1-2003。
3 实验结果和分析
从本次研究的灯具样本1# ~ 5#中挑选了1#、3#和4#灯具送北京市家用电器质量监督检验站检测,但各个灯具的测试结果不同程度地超过了标准规定的限值,为此,灯具厂对灯具进行了技术改进,改进后的1#灯具重新送检,并通过了两项标准的测试。
5#和2#灯具分别送广州相关测试机构检测,均已通过两项标准的测试。
以下是对其中3个灯具的主要测试参数进行分析。
3.1 1#灯具测试结果
3.1.1 无线电骚扰特性测量
(1)传导骚扰电压测试
A. 灯具的电源端频率为9 kHz ~ 30 MHz范围内传导骚扰电压(准峰值)。参见图4。
图4 电源端9 kHz ~ 30 MHz范围内传导骚扰电压(准峰值)
B. 灯具的电源端频率为9 kHz ~ 30 MHz范围内传导骚扰电压(平均值)。参见图5。
图5 电源端9 kHz ~ 30 MHz范围内传导骚扰电压(平均值)
(2)辐射电磁骚扰测试
A. 频率为9 kHz ~ 30 MHz范围内辐射电磁骚扰根据GB 17743-2007,灯具应在三个互相正交的环形天线系统中测试,每一环形天线分别测试辐射电磁骚扰,图6是其中水平环形天线测试的辐射电磁骚扰值。
图6 水平环形天线测试的辐射电磁骚扰值
B. 频率为30 MHz ~ 300 MHz范围内辐射电磁骚扰本次测试是采用CDN法测试,限值应符合GB 17743-2007的相应要求,测试结果见图7。
图7 频率为30 MHz ~ 300 MHz范围内CDN法测试的辐射电磁骚扰
以上测试根据测试单位告知是在全功率的42%左右(控制数据为十六进制6C,最大值为FF)、无线电骚扰最大时的测试数据。根据上述测试数据,1#灯具的电源端的传导骚扰电压和辐射电磁骚扰,达到GB 17743-2007的要求。
注:本次测试未对控制端的传导骚扰电压进行测试。
3.1.2 谐波电流测量
根据GB 17625.1-2003的要求应在最小功率和最大功率之间分为5个相等的级段,即在20%、40%、60%、80%和100%功率条件下测试各谐波分量,测试单位仅提供20%和其他情况下干扰最大时的测试数据。
(1)在全功率的20%,即24 W左右时,测试数据见图8。
图8 在全功率的20%时的谐波电流
(2)除全功率的20%外,其他功率下谐波最大时的测试数据见图9。
图9 除全功率的20%外,其他功率下谐波最大情况的谐波电流
根据以上测试数据, 1 # 灯具的谐波电流达到GB17625.1-2003的要求,在低功率(20%)时,虽有较大的偶次谐波,但GB 17625.1-2003对2次以外的偶次谐波无限定。
这也是造成电流波形畸变较大(见图10)的原因,应引起重视。
图10 1#灯具的电流波形
3.2 5#灯具测试结果
3.2.1 无线电骚扰特性测量
(1)传导骚扰电压测试。
A. 灯具的电源端频率为9 kHz ~ 30 MHz范围内传导骚扰电压(准峰值),参见图11。
图11 灯具电源端频率为9 kHz ~ 30 MHz范围内传导骚扰电压(准峰值)
B. 灯具的控制端频率为150 kHz ~ 30 MHz范围内传导骚扰电压(准峰值)。参见图12。
图12 灯具控制端频率为150 kHz ~ 30 MHz范围内传导骚扰电压(准峰值)
(2) 辐射电磁骚扰测试
A. 灯具在频率为9 kHz ~ 30 MHz范围内辐射电磁骚扰。
根据GB 17743-2007,灯具应在三个互相正交的环形天线系统中测试,每一环形天线分别测试辐射电磁骚扰,图13是其中一个环形天线测试的辐射电磁骚扰值。
图13 频率为9 kHz ~ 30 MHz范围内辐射电磁骚扰
B. 灯具在频率为30 MHz ~ 300 MHz范围内辐射电磁骚扰。
根据以上测试数据,5#灯具的谐波电流全部达到GB17625.1-2003的要求,在5种功率测试过程中11次谐波相对较大,但都在限值以下。且此灯电流波形畸变相对较小。参见图20。
图20 5#灯具的电流波形
3.3 3#灯具测试结果
3.3.1 无线电骚扰特性测量
灯具的电源端频率为9 kHz ~ 30 MHz范围内传导骚扰电压(准峰值)。参了图21。
图21 电源端频率为9 kHz ~30 MHz范围内传导骚扰电压(准峰值)
从以上数据表明3#灯具在631.5 kHz和771 kHz处的骚扰电压超过了GB 17743-2007的限值。
3.3.2 谐波电流测量
该灯在满功率(50 W)的条件下进行了谐波测试,测试结果如表3。
表3 3#灯具在满功率(50 W)条件下谐波测试的结果
从表3 中可知绝大多数的谐波电流都超过了GB17625.1-2003的规定,表中的“Fail”即表示不合格。此外,该灯的功率因数特别低,只有0.455。
注: 该灯仅在满功率情况下测试, 未按G B17625.1-2003的要求在最小功率和最大功率之间分为5个相等的级段,即没有在20%、40%、60%、80%和100%功率条件下测试各谐波分量。
4 结论与建议
4.1 结论
LED灯具工作时会产生一定程度的无线电骚扰和谐波,但只要在灯具中配置电磁兼容性能优质的电源装置,电磁干扰可以控制在标准许可的范围内,符合相关标准的灯具不会影响演播室和舞台其他设备的正常工作。
上一篇:LED产品价格下滑成市场主要表现
下一篇:便携式设备应用LED照明驱动电路设计
推荐阅读最新更新时间:2023-10-18 15:52
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况