彩色TFT液晶显示控制电路设计/其ASIC实现

最新更新时间:2012-02-11来源: 21ic关键字:数码相机  图像显示  ASIC 手机看文章 扫描二维码
随时随地手机看文章
    1引言

    通过彩色液晶显示器(LCD)取景是数码相机优于传统相机的重要特性之一,它解决了使用取景框取景带来的各种不便,而且可以在拍摄现场用液晶显示器回放刚拍的相片来查看拍摄效果[1],从而决定是否留下这张照片,这样能使摄影者更好地控制照片的质量。所以用液晶显示器进行取景和回放是数码相机两大必不可少的功能。同时液晶显示器还用来显示菜单,提供良好的人机交互界面。目前市场上出售的数码相机使用的液晶显示器都是彩色TFT液晶显示器,这种液晶显示器解决了一般液晶显示器中相邻像素串扰的现象[2],所以可用来显示真正的活动图像。

    数码相机专用集成电路芯片中的液晶显示控制电路主要实现的功能是向液晶显示模块(LCM)和数模转换器提供所有必需的控制时序信号,同时接受来自系统的YCbCr格式的图像数据,然后进行色空间 变换将图像转化成RGB格式,接着按照一定的顺序以每个像素一种颜色的方式向片外DAC输出图像数据。

    2系统结构与设计要求

    图1给出了我们设计的数码相机系统芯片中有关LCD显示部分的示意图。根据设计数码相机专用集成电路芯片的系统要求,液晶显示控制电路可用来控制多种规格的液晶显示模块,从6万多像素到20多万像素。此电路有两种工作模式:取景模式和回放模式,分别显示动态和静态图像。同时电路要具有多种扫描方式 ——上下左右的组合共有四种。因此此电路必须具备高度的灵活性,可由系统对其工作状态进行编程控制。 
 

    3电路设计

    根据设计要求,我们先确定电路的总体框架,然后设计各个模块并用Verilog HDL语言描述实现,最后进行RTL级的仿真。图2是整个电路的功能框图。

    整个液晶显示控制电路由四个模块组成,分别是寄存器文件、有限状态机、数据处理器和脉冲发生器。该电路的信号线主要和三个电路相关,一是和MCU接口电路相关,包括MCU_AB(地址总线)、MCU_DB(数据总线)、MCU_nWR(写使能)、MCU_nRD(读使能)和MCU_nCS(MCU操作选中信号);二是和液晶显示模块及数模转换器相关,包括从脉冲发生器输出的控制整个图像显示的时序信号和红、绿、蓝三原色数据以及PSAVE、BLANK和D_CLK三个控制DAC转换的信号;三是和数码相机专用集成电路芯片中的其他子模块相连,包括DMA_Req1、DMA_Req2、DMA_Ack1、DMA_Ack2四个DMA操作的交互信号和16位的YCbCr数据信号。SYSRST和SYSCLK分别是系统复位和时钟信号。以下分别对各个模块的设计进行分析。 

    3.1 寄存器文件模块

    寄存器文件模块主要由两部分组成:MCU接口和寄存器阵列。通过MCU接口系统可以对寄存器阵列进行读写操作,从而使液晶显示控制电路具有灵活多变的特点,可以控制多种规格的液晶显示模块,在多种模式下工作,可以输出多种扫描方式的控制信号,可以将图像显示在显示器的任一区域,同时还具有软件复位功能。整个寄存器阵列由 30个8位寄存器组成,分为三大类:模式寄存器、状态寄存器和波形参数寄存器。模式寄存器的低7 位有效,如图3所示。
 

    第0位为状态/复位位,它输出给MCU,并接液晶显示控制电路中其他模块的触发器的复位端。在系统复位和显示结束时该位为1,表示空闲并使接口处于复位状态。若系统把该位置为0,则电路的复位状态被解除并处于工作状态。第1、2 位用来决定显示时的扫描方式,其中V_DIR表示帧扫描方式,此位置1表示从上到下扫描,置0表示从下到上扫描;H_DIR表示行扫描方式,置1和置0分别表示从左到右和从右到左扫描,两位组合共有四种扫描方式。RSA、RSB和RSC三位用来表示使用哪种规格的液晶显示模块,它们的组合及对应的显示器分辨率如表1所示。MODE位用来表示工作模式,1表示工作在取景模式下,0表示工作在回放模式下。

    状态寄存器包括行数寄存器、列数寄存器、起始行寄存器、终止行寄存器、起始列寄存器、终止列寄存器以及奇偶数行的颜色顺序寄存器。行数寄存器和列数寄存器设置显示一帧图像所需的垂直时钟脉冲数和扫描一行图像所需的水平时钟脉冲数,对于不同规格和品牌的液晶显示器这两个寄存器参数是不同的。起始行寄存器、终止行寄存器、起始列寄存器和终止列寄存器设置显示图像的范围,如图4所示,这样实现了可以将图像显示在显示器任意区域的设计要求。由于TFT彩色液晶显示器每个像素只显示三原色中的一种颜色,它是和相邻像素一起显示彩色效果的,所以奇偶数行的颜色顺序是不同的。为了保证在某一像素点上给出正确的原色数据信号,在一定的扫描方式下,起始行寄存器和起始列寄存器必须与奇偶数行的颜色顺序寄存器相一致。例如,使用280×220型号的液晶显示器,在V_DIR=0(从上到下扫描)和H_DIR=1 (从左到右扫描)时奇数行的颜色顺序是RGB,偶数行颜色顺序为GBR,所以在设置起始行寄存器和起始列寄存器时一定要保证这样的颜色顺序,才能正确显示。

    脉冲参数寄存器设置了各驱动脉冲波形的时间参数,若干个寄存器对应于一相驱动脉冲。当有限状态机模块中的行计数器和列计数器的状态与某些脉冲参数寄存器的设置相同时,相应的输出脉冲发生翻转。对于不同规格和品牌的液晶显示器这些参数是不同的,即使对于同一产品,在不同扫描模式下它们也是不同的。

    3.2 有限状态机模块

    有限状态机由两个16位的行列计数器组成,状态变量为模式寄存器的状态/复位位。在工作模式下,两个计数器循环计数。当行计数器状态与起始行寄存器相同时,行有效信号变高,表示该帧图像的显示开始,此时数据处理器模块开始工作。在系统复位或行计数器状态与终止行寄存器相同时,行计数器被复位。在行有效信号变高后,当列计数器状态与起始列寄存器相同时,像素有效信号变高,表示该行的有效显示开始,此时数据处理器开始输出每个像素的颜色数据。在系统复位或列计数器状态与终止列寄存器相同时,列计数器被复位。

    3.3 数据处理器模块

    数据处理器模块如图5所示。它由三部分组成:DMA接口及其数据缓冲器、色空间反变换电路和溢出处理电路。根据系统设计要求,由电荷耦合器件(CCD)图像传感器采样得到的原始图像经过像素处理器模块的内插和色空间变换后,成为了YCbCr格式的图像,根据JPEG标准,从RGB到 YCbCr的色空间变换遵循公式[3](1)。

Y=0299R+0587G+0.114B
Cb=_0.169R-0.331G+0.5B (1)
Cr=0.5R-0.4186F-0.0814B 

    同时为了存储方便,将变换得到的Y信号减去了128,这样三种信号的值均在-128到+127之间,从而都可以用8位的带符号数表示。在存储YCbCr 信号时像素处理器模块将相邻像素的色度信号取均值然后进行复用,这样节省了存储空间。所以在图像存储器中相邻两个像素的亮度信号组合成一个16位的数据存放在一个存储单元里,而复用的色度信号则存放在下一个地址的单元里[3] 。当要用液晶显示器进行图像显示时,先通过连续两次DMA的读操作获得两个像素的亮度信号和色度信号,分别放入16位的数据缓冲器1和2,然后在读取新的两个相邻像素的YCbCr信号并把它们放入数据缓冲器3和4的同时开始处理缓冲器1和2中的数据,于是通过两对数据缓冲器的作用实现了一个简单的流水线操作。在色空间反变换中要实现将YCbCr信号转换成液晶显示所需要的RGB信号,根据公式(1)并进行简化我们可以得到相应的反变换的公式(2)。

(2) 

    根据反变换系数的范围,我们将所有的系数值乘上64,然后将乘积的整数部分用一个8位的带符号数表示。在色空间反变换中我们设计了一个9× 8的Booth乘法器,用来实现色度信号和变换系数的带符号乘法运算。为了保证反变换的正确,在运算过程中要进行符号扩展,所以变换所得的RGB信号是12位的带符号数,而最终输出到数模转换器的数据是8位无符号数,因此还要进行溢出处理,将所有的计算结果都限定在0~255范围内。同时由于液晶显示器的公共电极的电位是交流电位,即相邻两行的公共电极的电位是反相的,所以相邻两行的图像数据应该分别以原码和反码输出。

    3.4 脉冲发生器模块

    脉冲发生器根据有限状态机中行列计数器的状态和波形参数寄存器内的参数,产生各驱动波形,这些驱动波形用于驱动液晶显示模块本身及其外接的模拟前端电路。

    4 Verilog语言实现和FPGA硬件验证

    在确定了整体以及各功能模块的结构设计之后,就可以用Verilog HDL语言对设计进行RTL建模,然后用Synopsys 公司的VCS对设计进行仿真并调试。通过RTL级的仿真后,我们对此电路进行了FPGA的硬件验证,使用的芯片是Xilinx公司的VirtexE1000-BG560,系统时钟为54MHz。无论是单独测试还是作为整个数码相机专用芯片的一部分,液晶显示控制电路都能成功实现两种工作模式下的设计要求,性能良好。

    5结束语

    通过FPGA验证后,液晶显示控制电路用TSMC 0.25mm SAGETM工艺实现,后端流程如图6所示,其中的Design Compiler,Prime Time和Formality是Synopsys公司的产品;Silicon Ensembler和Virtuso是Cadence公司的产品。图像采样接口的电路规模为15000门左右,芯片面积为0.49mm×0.8mm。

关键字:数码相机  图像显示  ASIC 编辑:探路者 引用地址:彩色TFT液晶显示控制电路设计/其ASIC实现

上一篇:照片质量的UXGA TFT-LCD开发
下一篇:NXPSSL21081LED驱动器参考设计

推荐阅读最新更新时间:2023-10-18 16:23

CCD数码相机电源结构及设计方案
概述:介绍了CCD数码相机的结构及对电源的要求,给出了根据电池种类(一般为碱性电池或锂电池)、电池节数及相机尺寸来决定最佳电源解决方案的实现电路和方法。 1 CCD数码相机的架构及电源要求 CCD数码相机一般由以下几部分组成: (1)镜头模块(含CCD传感器、镜头和马达)。CCD传感器一般需要+15V和-7V~-8V电源,最大电流约20mA;马达一般需要3.3V或5V电源。 (2)模拟前端电路(AFE),包括CDS、AGC及A/D转换器,它们所需电源一般为3.3V。 (3)ASIC芯片,包括时钟发生器、JPEG、DSP、LCD驱动器、CPU及外界音频、USB、存储器(SD卡、CF卡等)以有视频电路
[电源管理]
斯坦利电气开发出图像浮现在空间内的显示
  斯坦利电气在“CEATEC JAPAN 2011”上展出了图像看上去好像浮现在空间里的显示器。将普通显示器上显示的影像通过尺寸为100μ~300μm的名为微镜元件的反射镜反射两次,然后与来自其他反射镜的反射像在空间上成像,从而使影像浮现在显示器上。显示原理是由日本信息通信研究机构提出的,元件由斯坦利电气开发。设想应用于游戏机显示屏及汽车平视显示器等。   斯坦利电气试制出的产品是在平板上排列多个微镜元件制成的。在该公司的演示中,将设在显示装置内部的手机影像(从装置外看不到)经平板反射,从而使其能够从装置外部看到。有1个视点。视角约为20度。据该公司介绍,通过改变微镜元件的配置和角度等,能够调整成像位置(浮现高度)和视角。  
[汽车电子]
MEMS技术应用于加速度传感器高频继电器
  松下电工控制机器事业本部推出了采用MEMS技术的三款产品,分别是超小型MEMS高频继电器、面向车载用途的单轴加速度传感器、适用于小型数字设备的三轴加速度传感器。   MEMS继电器ME-X融合了MEMS和机械继电器技术,采用精密活动结构和磁回路,大小仅为4.0mm×2.5mm× 1.3mm,同时具有低接触阻抗、接点间高绝缘性、可在高频且宽频带下使用的机械式继电器的优点和小型、高效率、可高速开闭的半导体继电器的优点。继电器在6GHz时的电阻为50Ω,插入损耗约为0.5dB,隔离度约为28dB,功耗为100mW,可用于IC测试仪、测量仪、BS/地波数字广播、3G/4G移动电话等产品当中。         G
[工业控制]
ASIC设计转FPGA时的注意事项
    script src="/jf/jf-arcMain-1.js" type=text/javascript /script script type=text/javascript /script script src="http://pagead2.googlesyndication.com/pagead/show_ads.js" type=text/javascript /script script src="http://pagead2.googlesyndication.com/pagead/js/r20110330/r20110406/show_ads_impl.js" /script sc
[嵌入式]
传MTK夺思科ASIC大单,董事会新增晨星董事长或为合并热身
集微网综合报道,日前联发科非手机产品布局传喜讯,旗下定制芯片(ASIC)传拿下全球网通设备龙头思科(Cisco)最新基站设备订单,明年出货,相关芯片更为高端,有利提升产品均价(ASP),为营运增添动能。 联发科主力产品为智能机芯片、电视芯片、多媒体芯片等,但多数步入成长高原期,因此这几年积极寻求跨入难度较高的定制芯片,今年也从博通手中抢下首张思科订单。 由于明年度的芯片设计已如火如荼进行中,市场传出,联发科又顺利取得思科明年度的订单,且较今年交货的产品高端,有助于提升产品均价(ASP)。 供应链指出,联发科今年出货给思科的ASIC,是以子公司网通芯片厂擎发的产品修改后,再向思科投石问路,最终获选供货给其低端局端设备。 现在联发科改
[手机便携]
基于嵌入式ARM的LCD图像显示系统设计
0 引 言    随着嵌入式技术迅猛发展和Linux在信息行业中广泛应用,利用嵌入式Linux系统实现图像采集处理已有可能。实时获得图像数据是实现这些应用的重要环节。本文使用的系统硬件平台采用Samsung公司的处理器S3C2410,并以此为基础,在基于嵌入式Linux系统平台上设计了建立图像视频的一种方法。 1 系统硬件电路设计    S3C2410芯片处理器内部集成了ARM公司ARM920T处理器核的32位微控制器,资源丰富,带独立的16 kB的指令Cache和16 kB数据Cache、LCD(液晶显示器)控制器、RAM控制器、NAND闪存控制器、3路UART、4路DMA、4路带PWM的定时器、并行I/O口
[单片机]
基于嵌入式ARM的LCD<font color='red'>图像</font><font color='red'>显示</font>系统设计
基于DSP+FPGA+ASIC的实时图像处理系统
   1.引言   随着红外焦平面阵列技术的快速发展,红外成像系统实现了高帧频、高分辨率、高可靠性及微型化,在目标跟踪、智能交通监控中得到了越来越多的应用,并向更加广泛的军事及民用领域扩展。实时红外图像处理系统一般会包括非均匀校正、图像增强、图像分割、区域特征提取、目标检测及跟踪等不同层次的实时图像处理算法,由于图像处理的数据量大,数据处理相关性高,因此实时红外图像处理系统必须具有强大的运算能力。目前有些红外图像处理系统使用FPGA实现可重构计算系统 ,运算速度快,但对于复杂算法的实现难度比较高,且灵活性差。大多数红外图像处理系统则采用DSP+FPGA的硬件架构 ,其中DSP负责实现图像处理算法,FPGA负责实现各种接口电路
[嵌入式]
权威机构:FPGA性能超越DSP数十倍!
  多年以来,在ASSP、ASIC、DSP、FPGA等芯片的选择问题上,高端通信系统设计师总面临诸多棘手而复杂的难题。   虽然这些芯片技术在价格与性能方面各有优劣,但是FPGA供应商一直宣称:与复杂且昂贵的ASIC相比,它们提供的产品在多个方面都更胜一筹,例如具有更快的产品上市速度,以及更多的设计灵活性。然而截至目前,在与DSP的竞争中,人们却普遍认为,FPGA在性价比方面的表现远不如 DSP。   不过,技术咨询公司Berkeley Design Technology(BDTI)一项最新但是具有争议性的基准测试研究结果显示,在多个意义重大的DSP应用中,FPGA的性价比优势可能超越了独立DSP。   “特别地
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved