针对便携式应用的LED驱动解决方案

最新更新时间:2012-03-02来源: 21IC关键字:便携式  LED  驱动 手机看文章 扫描二维码
随时随地手机看文章

  引言

  LED驱动已迅速成为功率转换技术日益重要的应用领域。除了要求更高效率、更低静态电流之外,LED驱动还有不少更精细的要求,如LED匹配、调光、白光平衡等等。另外还有一些基本架构问题,如LED是串联还是并联连接、是进行高端还是低端关段。某些特定的LED实现方案能够获得不同程度的效果,比如众所周知的感应式升压解决方案和电荷泵倍增器。而分数电荷泵、4开关降压-升压解决方案和多路电感解决方案则被人忽略。后者也被称为“SIMO”,即单电感多输出,未来,随着白光LED背光被更复杂的RGB同类产品所取代,预期这种技术将扮演越来越重要的角色。

  LED简介及工作原理

  便携式产品的发展趋势是逐渐向更多多媒体应用转变。这一趋势要求使用能够支持数百万颜色的、分辨率更高的显示屏。显示屏的传统照明方法是采用真空荧光灯管,但最近广泛采纳的是LED。LED的尺寸小得多,这对便携式产品非常有利,而且LED的功耗也更小,还远比真空荧光灯更为可靠。不过,如何保持恒定的光强度和颜色是这一照明技术面临的最大挑战。了解白光LED的工作原理有助于了解如何确保其强度和颜色一致。

  由于LED是半导体器件,相比其他光源,它具有独特的特性,其中最显著的是电流和光强度之间的非线性关系。图1显示一些典型LED的这种关系。
 

                                                                图1一些典型LED的电流和光强度之间非线性关系

  第二个显著特性是有关LED的正向压降。不同于白炽灯泡,LED并非纯粹的电阻式负载。正向压降随LED颜色而改变。一般而言,红光LED的正向电压为2.2V,绿光LED的正向电压3.1V。白光LED和蓝光LED的正向电压相同,典型值都是3.3V。

  为便携式设备中这些LED提供恒定的电压和电流是一大挑战。供电电源必须能够自我调节以适应不断降低的电池电压,否则光强度会随电池电压而变化。因此,这些设备需要非常特殊的电源。

  驱动器选择

  保持LED电流和电压恒定的常用架构有3种。第一种是针对串联LED结构的感应式升压调节器。第二种仍是相同的感应式升压调节器,但用于并联LED结构。最后一种是电容式电荷泵。这些架构各有其优势,但对于给定的应用,仅有一种能够提供最大的优势。

  感应式升压调节器

  感应式升压架构 (比如飞兆半导体的FAN5608) 的基本工作原理是利用电感的电流存储能力。电感可以阻止电流变化,正负皆然。这种阻抗能力对器件上压降的影响可以下式表示:

  这一简单的公式表明了升压转换器的工作原理。晶体管导通,电流开始在电感中流过,然后晶体管关断。由于电流无法瞬间降为0,它继续流经二极管。电流逐渐减小,di/dt变为负,导致电感上的电压为负。

  利用克希霍夫 (Kirchokff) 电压定律,可计算出输出电压。

  Vin·ton+(Vin-Vout)·toff=0

  上式可重新整理为

  这里D代表ON占空比。由于D的范围在0到1之间,故输出电压总是比输入电压高。输出电压与占空比成正比,因此,为了产生更高的电压,必须提高占空比。FAN5608利用这种方法可使最大输出高达18V。这样一来,可驱动多达4到5个串联LED。对并联结构,FAN5608能够产生高达40mA的电流。

  电容式电荷泵

  电荷泵利用电容来存储能量,可以把输入电压提升到1、1.5或 2倍。通过一个开关阵列和一个时钟,电容可以交替性地进行并联充电和串联放电,从而提高输出电压。图2可以很好地解释这一原理。
 

图2

  该调节器的最大输出电压取决于电容的数量和分配给充电及放电的时间。飞兆半导体的FAN5607使用了两个电容,有1×、1.5×和2×三种模式。在2.4V 到 5.5V的输入电压范围上,该器件能够为4个白光LED的每一个提供高达30mA的电流。

  LED拓扑

  利用感应式升压转换器,LED能够被串联驱动或并联驱动。串联阵列可确保通过所有LED 的电流都相同,从而保证相同的光强度。这种方案的缺点是,驱动器的输出电压必需等于或超过所有LED的正向电压总和。在某些应用中,这就可能高达24V,于是需要采用击穿电压超过24V的硅工艺,这一般会增加器件的成本。其次,升压转换器的效率也随输出电压的增加而受到影响。表1所示为让4个白光LED产生相同的光量,三种不同拓扑所需功率之比较。如果对效率的要求比较高,串联拓扑并不是好的选择。

  尽管转换器不需要把电压提升到太高(如3.3V)就可驱动并联阵列,但并联拓扑需要对每一个LED进行电流调节。由于LED的光强度随电流而变化,所有LED中的电流需要匹配,以保持每一个LED的光强度稳定。这增加了系统的复杂性和成本。并联拓扑的优势在于效率高,从表1数据可看出,FAN5608在并联模式下的的效率比串联模式下略高。

  电荷泵主要用于驱动并联阵列,因为输出电压与充电电容的数量有关。电荷泵有一些优点,它们一般只需要较小的板空间,因为电容可以小至0402封装大小。这是一个很显著的优势,尤其是在终端产品为便携式设备时。对便携式无线电产品而言,还有一个好处是产生的EMI更少。即使使用屏蔽电感,感应式升压调节器产生的EMI噪声也超过了普通电荷泵的。这可是手机等便携式接收器的一个重要考虑事项。FAN5607产生的EMI噪声极少,这使它非常适合于驱动手机显示屏中的白光LED。不过,若对板空间和EMI的要求都不太严苛的话,电荷泵可能就不是适当的解决方案。因为,对这种方案来说,要减小尺寸,就得牺牲效率。电荷泵不是最高效的升压调节器,故在计算电池功耗时,必须考虑到这种影响。

  调光方法

  调光有利于改变照明光强度以实现功耗目标或美学价值。LED调光有两种常用方法。第一种是简单地调节电流,电流的微小变化引起LED强度的微小变化,这个过程非常易于控制。第二种方法是利用脉冲宽度调制时钟来改变LED的ON占空比,通过LED的平均电流随占空比的减小而降低。这种方法的主要考虑事项是时钟频率,必须足够高至感觉不到闪烁。一般需要达到1kHz或更高。线性调节和脉冲宽度调制都对白光LED的颜色有影响,但作用相反。

  绝大多数白光LED都只是带磷光质涂层的蓝光LED而已。磷光质中的电子被短波长光激发,发出白光。白光LED的颜光或色度将随光振幅、峰值波长或频谱形状的变化而变化。而上述因素又将随结温变化而变化。采用线性电流调节的调光方法会让白光LED偏黄色,因为磷光质在电流减小时更有效。采用脉冲宽度调制的调光方法则会使LED偏蓝色,因为磷光质作用变小。这种影响缘于峰值波长向更短的波长移动。
 

  FAN5607 和 FAN5608都考虑到了上述任一种调光方法的实现。这两款器件都带有可变模拟输入,可线性调节电流。两款器件都能够产生脉冲来导通或关断输出。 理想的调光方法是结合上述两种方法,把色差减至最小。

  结语

  LED是高效的便携式设备显示屏照明方法。由于它们采用半导体技术,故需要独特的调节手段。电荷泵和感应式升压调节器可提供最好的电源解决方案,不过它们各有其优势,应该针对特定应用具体考虑。效率、最小EMI辐射、更小尺寸的重要性都表明必需选用适当的驱动器。另一个重要因素是调光方法。脉冲宽度调制和线性调节的结合可提供稳定的调光方法,同时尽可能地减少色差。确保LED提供恒定光不是什么挑战,但解决方案应该针对相关应用量身定做,以最大限度地发挥其优势。

关键字:便携式  LED  驱动 编辑:探路者 引用地址:针对便携式应用的LED驱动解决方案

上一篇:大功率LED驱动电源应该如何选择?
下一篇:ST L5973D MR-16格式HBLED驱动方案

推荐阅读最新更新时间:2023-10-18 16:27

众多电子制造厂商携LED云集NEPCON China 2011
2011年5月11日-13日,NEPCON China 2011将在上海光大会展中心隆重拉开帷幕。为期三天的展会,将为专业观众集中展示当今最先进的SMT设备产品以及最前沿的电子制造技术。据悉,作为SMT的重要应用领域,与LED相关联的电子生产设备、测试及材料厂商也云集展会,为现场观众带来丰富的解决方案。 数据显示,中国LED照明市场2010年达到216.61亿人民币,预测2011年增幅达到35.8%。2011-2012年将是对LED照明产业的重要投资时机。 基于LED强劲的发展势头,各大SMT设备、材料厂商都不约而同地把目光锁定在LED领域。在NEPCON China 2011展会上,这种趋势显像得非常明显
[其他]
内部集成600V高压开关全电压LED恒流驱动
MT7953采用源边反馈技术,无需次级反馈电路,也无需补偿电路。内部集成600V高压功率开关,系统方案简洁可靠。MT7953采用美芯晟专利的恒流控制与补偿技术,LED输出电流精度达到±3%以内,具有优异的线性调整率和负载调整率,且对变压器绕组电感变化不敏感。 MT7953同时实现了各种保护功能,包括逐周期过流保护(OCP)、过压保护(OVP)、LED短路保护(SCP)、LED开路保护和过热保护(OTP)等,以确保系统可靠地工作。 主要特点 内部集成600V功率管 AC85V到AC265V交流输入电压 源边感应及恒流机制,无需次级反馈电路 高精度LED恒流电流 (+/-3%) 逐周期峰值电流控制 LED开路/短路保
[电源管理]
基于TinyOS的CC2420驱动组件的研究
引言 网络节点是构成无线传感器网络的基本单位,无线传感器网络节点有两种常用体系结构:Atmel AVR处理器+TinyOS 和MSP430+TinyOS 。本文采用ATmega128L+TinyOS的体系结构。因此,CC2420驱动组件设计应符合TinyOS的硬件抽象体系结构(Hardware AbSTractiON Architecture,HAA) 。TinyOS中将硬件抽象体系结构分为3层:硬件表示层(Hardware Presentation Layer,HPL)、硬件适配层(Hardware Adapation Layer,HAL)和硬件接口层(Hardware Interface Layer,HIL)。各层功能作
[单片机]
基于TinyOS的CC2420<font color='red'>驱动</font>组件的研究
1602LCM液晶显示屏的驱动函数和实例(C)
/*============================================================ 使用1602液晶显示的实验例子 明浩 2004/2/27 ============================================================== SMC1602A(16*2)模拟口线接线方式 连接线图: -------------------------------------------------- |LCM-----51  | LCM-----51  | LCM------51 | -----------------------------------------
[单片机]
大功率LED简述
  大功率LED是达到高光通量的最重要手段之一。用大功率LED照明有很多优点,也有缺点。如何用好大功率LED是关键,同时,本文对于大功率LED照明产品与传统照明产品做了比较,也对高光通LED在照明领域的应用进行了研讨。   一、 LED的发展史和应用潜力LED从诞生至今以每10年亮度提高30倍,价格下降10倍的“Haitz”定律快速发展。普通高亮度白光led目前实验室里已经达到100 lm/W的水平,50 lm/W的大功率白光LED也已进入商业化。在单色光方面,红光、黄光、蓝光、绿光的光效也不断被刷新记录,LED作为新型光源应用范围越来越广,也逐渐引起了更多人的关注和期望。   目前LED应用呈多元化分布在各个行业,包括
[电源管理]
浅析LED交通信号灯未来发展
目前,高功率LED除了在汽车照明、照明灯具、LCD 背光、LED路灯等高附件值产品中得到应用外,并且可以获得相当丰厚的利润。不过,随着老式普通交通灯以及前些年不够成熟的led信号灯更换的时机到来,新型高亮三色LED交通指挥灯者到了广泛的推广应用。事实上,一整套功能完善、品质较高的LED交通指挥灯售价是非常昂贵的,但是由于交通指挥灯在城市交通中的重要作用,每年都有大量的交通信号灯需要更新,进而引出一块比较大的市场,毕竟高利润也有利于LED生产与设计公司的发展,对于整个LED产业来说也会产生良性刺激。 交通领域应用的LED产品主要有红、绿、黄信号指示,数位计时显示、箭头指示等。产品要求白天高强度环境光时,要
[电源管理]
浅析<font color='red'>LED</font>交通信号灯未来发展
伺服驱动器的作用与变频器区别
伺服驱动器是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分主要应用于高精度的定位系统。 伺服驱动器的作用 伺服电机控制器是数控系统及其他相关机械控制领域的关键器件,通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位。属于伺服系统的一部分主要应用于高精度的定位系统。 主流的伺服驱动器均采用数字信号处理器作为控制核心,可以实现比较复杂的控制算法,实现数字化和网络化以及智能化。功率器件普遍采用以智能功率模块为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流以及过热和欠压等故障检测保护电路。 伺服驱动器是运动控制的重要组成部分,被广泛应用于工业
[嵌入式]
四季度LED台厂上下游表现将呈现两极分化
据产业研究机构LEDinside资料统计,2009年8月台湾地区上市上柜LED厂商营收总额共64.11亿元,相较今年7月份营收亿元成长7.2%(YoY+8.3%)。其中LED芯片厂8月营收总额为27.57亿元,较上月成长5.2%;LED封装厂8月份营收约36.54亿,较上月成长8.7%。 LED上下游厂商第四季表现将会呈现两样情 LEDinside观察近期市场状况,下游封装厂部分,订单能见度仅达到9月底。LEDinside表示,第四季以后传统淡季来临,中小尺寸的手机背光源,将随着手机的出货淡季来临而逐渐下滑。大尺寸背光部分,由于第三季LED供给吃紧,面板厂有超额下单(over booking)的现象。加上第
[电源管理]
四季度<font color='red'>LED</font>台厂上下游表现将呈现两极分化
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved