Nios II系列软核处理器是Altera的第二代FPGA嵌入式处理器,其性能超过200DMIPS, Altera的Stratix、Stratix GX、Stratix II和Cyclone系列FPGA全面支持Nios II处理器。Nios II系列包括3种产品:Nios II/f(快速)--最高的系统性能,中等FPGA使用量;Nios II/s(标准)--高性能,低FPGA使用量;Nios II/e(经济)--低性能,最低的FPGA使用量。这3种产品具有32位处理器的基本结构单元--32位指令大小,32位数据和地址路径,32位通用寄存器和32个外部中断源;使用同样的指令集架构(ISA),100%二进制代码兼容,设计者可以根据系统需求的变化更改CPU,选择满足性能和成本的最佳方案,而不会影响已有的软件投入。另外,Nios II系列支持60多个外设选项,开发者能够选择合适的外设,获得最合适的处理器、外设和接口组合,而不必支付根本不使用的硅片功能。本文采用CycloneTM器件中的EP1C6Q240C8来实现雷达仿真电路显示模块的设计。
1 硬件设计
本系统的硬件结构如图1所示,主要包括以下部分:
图1 系统硬件结构
1.1 EP1C6Q240C8及其配置芯片
本文系统中的处理器选用的是采用Altera公司提供的Cyclone系列的EP1C6Q240C8,该芯片采用240脚的PQFP封装,提供185个IO接口。
该芯片拥有5980个LEs;可提供92160bit的ram;芯片内部还自带有2个锁相环,可以在高速运行的时候保证系统时钟信号的稳定性。
在Nios II的硬件电路,通常使用Altera串行配置器件来存储FPGA配置文件*.Sof。
Altera串行配置器件可提供在系统编程(ISP)和多次编程能力,能够使FPGA和配置器件能够以最低的价格实现完整的可编程芯片系统(SOPC)解决方案。标准型配置器件, 包括EPC2、EPC1、EPC1441、EPC1213、EPC1064和EPC1064V.本文使用EPC2配置器件。使用时,首先使用下载电缆将计算机生成的FPGA配置文件*.Sof使用programmer烧入EPC2配置器件中,然后由EPC2配置器件控制配置时序对FPGA进行配置,一次烧写即可重复使用,编程完后可以脱离计算机工作。
1.2 存储模块
存储模块包括两部分:只读存储器和随机存储器。
只读存储器用来存储用户程序和需要下载的文件。由于利用EP1C6Q240C8处理器的LCD滚屏设计是较为复杂的SOPC系统,用户程序和需要下载的文件较大,用EPCS来存储是不现实的。根据设计的具体要求选择存储容量为4Mbit的FLASH作为只读存储器, 并可使用flashprogrammer将*.elf和需要下载的文件烧入FLASH中,并在系统加电后实现调用。
随机存储器(RAM)主要是为了存放可执行代码和程序中用到的变量。由于所采用的处理器中的ram的存储容量较小,根据本文中设计电路的要求,采用8M的外部sram.
1.3 显示模块
LCD显示模块是由控制器、行驱动器、列驱动器和液晶显示屏等器件构成的。其核心部件LCD控制器是SOPC,它一方面提供与微控制器(即NIOS处理器)的接口,一方面连接行/列驱动器。通过对SOPC编程来实现对lcd的操作控制。本文采用的接口可编程芯片是T6963C来控制单色点阵图形LCD。
T6963C是一种内置控制器的图形液晶显示模块,其面向显示存储器的引脚有8根数据线(D7~D0)、16根地址线(AD15~AD0)和4根控制线,最多能管理64kB大小的显示存储器。T6963C单屏可以达到640×128像素,双屏可以达到640×256像素。
2 软件开发
基于NIOS II处理器的雷达仿真电路显示模块的软件设计主要是使用NIOS通过对LCD的控制器进行编程以达到对LCD进行显示控制来实现的,其软件实现方案主要包括以下几部分:
2.1 T6963C初始化
显示模块软件开发首先要对控制LCD的T6963C的寄存器进行初始化,设置LCD的特性。其初始化包括:
(1)设置文本和图形缓冲区的起始地址和宽度、屏幕每行的字节数。其软件设计主要依据表1指令来实现:
表1 T6963C控制指令
部分软件代码如下所示:
IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DB_BASE,0xff);
IOWR _ ALTERA _ AVALON _ PIO _ DATA(LCD_CS_BASE,0);
IOWR _ ALTERA _ AVALON _ PIO _ DATA( LCD _ WR _ BASE , 0 );
IOWR _ ALTERA _AVALON_PIO_DATA(LCD_CD_BASE,0);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_DB_BASE,参数数据1);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_DB_BASE,参数数据2);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_CD_BASE,1);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_DB_BASE,指令);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_CS_BASE,1);//
IOWR_ALTERA_AVALON_PIO_DATA(LCD_WR_BASE,1);//
(2)设置系统的字符和图形之间按"或"功能显示,其软件设计主要依据指令80H来实现,部分软件代码如下所示。
IOWR_ALTERA_AVALON_PIO_DIRECTION(LCD_DB_BASE,0xff);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_CS_BASE,0);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_WR_BASE,0);IOWR_ALTERA_AVALON_PIO_DATA(LCD_CD_BASE,1);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_DB_BASE,80H);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_CS_BASE,1);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_WR_BASE,1);
2.2 LCD滚屏设计
定时间、定间隔地修改文本显示区与图形显示区首地址将会产生显示画面滚动显示效果。软件实现如下:
Delay(自行设定延时时间);
alt_u32Text_stadd;
alt_u8Text_stadd_newL,Text_stadd_newH;//调整后的文本显示区低8位地址和高8位地址
Text_stadd_new=文本区地址高8位×256+文本区地址低8位+0x14//0x14表示每行可显示30个字符
Text_stadd_newL=Text_stadd_new/256;
Text_stadd_newH=Text_stadd_new%256;
IOWR_ALTERA_AVALON_PIO_DATA(LCD_DB_BASE,Text_stadd_newL);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_DB_BASE,Text_stadd_newH);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_CD_BASE,1);
IOWR_ALTERA_AVALON_PIO_DATA(LCD_DB_BASE,40H)。
图形显示区首地址的调整方法同文本区的调整方法相同。
3 结论
本文阐述基于NIOSⅡ嵌入式处理器控制LCD的硬件设计方案和软件设计方法,充分体现了NIOSⅡ嵌入式处理器在LCD设计中的灵活性。
上一篇:LED背光源亮度均匀性的研究
下一篇:一种直下式LED背光源的设计方案
推荐阅读最新更新时间:2023-10-17 15:08
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 『ADI实验室电路DIY大赛』正式启动!
- 抢先体验NUCLEO家族新贵,ST STM32 NUCLEO-F091RC开发板28元包邮!
- 快来!月月有奖第27期开始了~
- 【EEWORLD第三十五届】2012年02月社区明星人物揭晓!
- PI HiperPFS-4系列功率因数校正IC,了解产品特色,答题享好礼!
- TI有奖直播|使用DLP®微型投影技术的IoT显示方案
- Maxim 利用nanoPower创新技术,致力于降低系统的静态功耗 看视频答题赢好礼! 还有免费开发板等你拿
- 电阻哪个强?看Vishay演示视频 抢楼发言赢好礼
- 抢鲜体验:NXP LPC54018 IoT Module测评来了
- 2023 Digikey KOL 视频系列第一期