背光是显示系统中耗电量最大的部分,除了特别大的屏幕,LED已经几乎在大部分显示屏中取代了CCFL,大幅降低耗电量,但如果不加以有效管理,背光仍然会过度消耗电源。本文主要介绍LED背光的兴起,并分析能够摆脱背光需求的OLED显示技术。
OLED电源管理
OLED显示屏的能源消耗值并不是固定的,而是取决于当时显示的图像。典型视频和图片显示应用时,实现全部像素充分发光所消耗的功率只有理论“最大”值的25%.对功耗要求严格的应用来说,还可通过图像设计来降低功耗。例如,以负性模式(黑底白字)显示图像比正性模式(白底黑字)要更加节能,因为只需要启动约十分之一的像素。
像素明亮度也影响着功耗。节省能源的方法既包括在环境光允许条件下降低所有像素明亮度,也包括对环境光敏感的明亮度管理,如把菜单中无法选择的选项调暗等操作。降低明亮度还可延长显示屏寿命。当电源要求非常苛刻时,也可以考虑改变常用菜单颜色,因为红色和绿色像素要比蓝色更加节能。
由于OLED像素的电容特性,刷新频率对功耗也有影响。很高的帧频会增加充电周期次数,进而增大功耗,同时也会让显示变暗,因为像素在每次刷新周期中没有时间充分充电。在不导致可视图像“抖动”的前提下,刷新速率设置应尽量压低。通常来讲,比较合适的刷新频率为75赫兹,不过有时候低达60赫兹也可以蒙混过关。
因为OLED是放射式技术,持续使用中像素退化过程会非常缓慢。一方面可以使用待机模式和超时模式来放缓老化过程,另一方面也可以考虑设置屏保。屏保中使用的像素数目和像素明亮度可以根据上述介绍进行管理。
图1:诺基亚N85电话,OLED显示屏
OLED——无背光技术
LCD的驱动自身消耗能源极低,而且显示系统的能耗几乎全部为背光所需,只要电源不关掉,背光通常会照亮所有显示区域。
相比之下,OLED是放射式技术。每一个像素都放射出自己的光,未启动时不会发光,几乎不耗能。与背光LCD显示屏不同,OLED能够产生真正意义上的黑色,对比度大幅提高,通常为10000:1,而传统的TFT显示屏则为400:1.OLED也更加明亮,其中一个原因是LCD显示屏的成对偏光片会过滤掉背光放射出的一半灯光,而OLED不需要成对偏光片。
图2
从审美角度看,OLED技术凭借强化后的明亮度和对比度也绝对优于LCD.OLED显示屏的反应时间通常是50μs,而LCD是25ms,这意味着OLED全动态视频速度得到提升,灰阶再现品质大幅优化。
根据上述原因,虽然OLED成本更高,寿命更短,但越来越多造型/性能很酷的消费产品对此加以采用,比如索尼的X系列Walkman随身听,诺基亚N85和微软Zune HD等产品。OLED技术也出现在工业市场上,配以开发和评估工具包,适用于各种型号(0.79至7.0英寸)和分辨率(64×48至480×272)。LED背光的优势与缺陷
LED背光目前已是10.4英寸以下工业显示板标准,甚至在15英寸以下也可选择。由于LED使用直流供电,驱动更简单,无需换流器,效率得到提升,电源消耗随明亮度增加约成线性增长,简化了电源管理。因此,大多数中小型显示屏目前都安装了LED.
虽然LED背光拥有明显优势,但也存在一些缺陷。白色LED并不是真正意义上的白色,实际上是蓝色LED加黄磷产生的白光,光谱曲线上绿色和红色部分中存在间隙。为实现最佳色彩平衡,质量上乘的LCD显示屏安装的是RGB背光。
不管型号大小如何,大多数显示屏都需要一个以上的LED才能实现可接受的明亮度,不同LED之间的亮度均匀性则更难实现,特别是当LED老化时问题更加严重。电源效率也是要考虑的问题。制造商使用MEMS和其他光导技术将光照扩散到更大的区域,实现最大明亮度和均匀度。
实现LED背光利用最大化LCD显示屏的性能各不相同,重点参数包括明亮度、对比度和可视角度。明亮度的标准较为规范,由黑暗房间内背光驱动最大化、所有像素呈白色情况下每平方米坎德拉数确定。对比度数值比较起来相对难一些,因为关于对比度存在不同的解释,不过基本上都是将系统能够呈现的最亮色彩(白色)与最暗色彩(黑色)的亮度相比较。可视角度则比较主观。
显示明亮度受到TFT显示屏传输率的影响。每个像素都由薄膜晶体管所控制,但晶体管会将该像素的一小部分遮蔽住。通过使用低温多晶硅(LTPS)等技术,能够缩小该晶体管的规模。
根据性能数据,可以列出一些显示屏以供选择,但如果要求在苛刻条件下也要实现良好可见度,对电能消耗也有要求的话,最佳建议是在若干不同显示屏上模拟实际应用,在每个案例中衡量背光电源,其中要考虑显示屏使用环境的环境光、可能的可视角度等因素。有时候对承载关键信息的色彩进行改变也会对显示性能产生影响。
小结
当今世界便携式产品一方面要求降低能耗、重量和成本,而另一方面要求添加多媒体功能,连最单调的测量测试系统也要进行美观设计,导致两方面存在着矛盾冲突。移动电话市场就像一个大试验场,各种旨在调和双方矛盾的新技术都可以拿到市场上进行实验。当年LED背光首先就应用在移动电话显示屏上,现在已经成为工业市场上中小型显示屏的普遍标准。OLED技术似乎也会遵循同样的发展道路。
上一篇:学习篇:认识LED单元板/模组
下一篇:雷士照明销售轮岗意在为理解为卸磨杀驴
推荐阅读最新更新时间:2023-10-17 15:14
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况