最新智能LED照明控制应用分析

最新更新时间:2013-09-21来源: OFweek半导体照明关键字:LED照明  控制应用 手机看文章 扫描二维码
随时随地手机看文章

散热管理是新型LED灯中最困难、要求最严格且成本最高的设计部分。如果不进行充分的散热管理,将会造成照明失效或火灾等灾难性后果。如果不进行有效的散热管理,则会带来需要频繁更换失效的LED灯或者导致建筑物火灾等灾难性后果。使用智能LED灯控制功能来监控LED灯的温度是较为简单的散热管理办法,同时由于LED灯能在温度升高情况下降低功率,因此安全性也将会得到大幅提升。

  NTC散热管理

  NTC电路的基本原理是通过监控LED灯的温度来提升LED灯的安全性并降低设计复杂度。当温度升高时,控制器减少流明并借以将LED保持在安全水平之内。换言之,当温度升高时,减少流明,反之,当温度下降时,则增加流明。

  我们可通过检测NTC上的电压来检测LED灯的温度变化。检测到的电压与NTC的温度有直接关系,而NTC的电阻会随NTC及其周边电路温度的升高而下降。使用NTC确定温度有两种基本方法。

  方法一:在系统强制实施已知电压的分压器电路中使用NTC,并随后测量NTC节点上的电压。NTC温度升高时,电阻减小。电阻减小将导致分压器比的变化。NTC节点的电压也会随温度升高而下降。

  方法二、强制已知电流通过NTC,并测量NTC上的电压。NTC温度升高时,电阻减小。根据欧姆定律,电阻减小将改变NTC节点上的电压。如电阻减小而电流保持不变,NTC节点上的电压也会下降。

  就改进操作、提高安全性而言,这两种监控LED灯温度的方法实施起来都很简单直接。图1是使用LED作为升温源头的这两种方法的原理图。

  使用NTC确定温度的两种基本方法。

  温度过高还是LED故障?

  LED灯的流明输出下降时,了解是否因过高的温度环境还是因为LED出了故障而导致LED输出下降至关重要。我们可用显示流明下降的指示器来确定下降原因。

  所示系统中的流明下降是通过低功耗的红色LED指示的。当系统处于最大流明输出时,红色LED关闭;当LED灯温度升高时,流明输出则会下降,而流明输出下降时,红色LED即会开启。随着流明输出不断下降,红色LED的强度会相应增加。当流明输出下降到其最低强度时,红色LED将会完全开启。

  当流明输出处于最低强度而LED灯的温度仍然较高时,红色LED指示灯还可作为预警严重问题的报警器。在报警模式下,红色LED会在白色LED全部关闭的情况下不断闪烁。

  上图显示了带有NTC和警报指示器的普通LED驱动器和LED控制器。普通LED灯包含的一个LED驱动器经配置后可通过LED提供一个设置电流。驱动器无法根据温度降低流明。驱动器提供的温度监控功能只能用于自身保护,并在温度极高的情况下完全关闭。

  带有NTC和警报指示器的普通LED驱动器和LED控制器

  LED控制器具有普通LED驱动器的全部控制功能,并能增强温度监控、通信和调光控制等其他功能的智能水平。方框图中蓝色部分是LED控制器的基本模块和组件。以红色显示的组件不是基本操作所必需的,但显示用于本文所述的NTC和报警功能。

  普通LED添加NTC后,就能以可控顺序在温度达到预设限度时关闭LED灯。LED控制器右侧的两个红色组件(电阻和NTC)根据NTC操作部分所介绍的方法一进行配置。控制器向电阻元素提供精确的电压。NTC节点处的电压由控制器测量,以便转换为相应的系统温度。

  报警机制可让LED灯显示温度升高并达到必须关闭以确保安全的程度。LED控制器左侧的两个红色组件(电阻和LED)是基本的指示灯LED配置。LED的亮度由PWM(脉冲宽度调制)信号控制。LED在PWM占空比提高情况下会增加亮度。

  上述智能LED灯以另外一个LED指示灯的方式显示报警信息。LED报警只是智能LED能够采用的众多通信接口之一。此外还可采用PLC(电力线通信)、DMX(数字多路复用)和DALI(数字可寻址照明接口)等接口。

  流明调节

  上图的流程图显示了监控LED灯温度并在温度达到一定安全限度情况下调节流明大小的简单算法。流程图顶部的“加电启动——系统初始化”块是微控制器初始化块。墙壁开关打开后,LED灯加电,该块将配置LED灯进行基本操作,如流明输出和温度检测等。

  “灯是否打开?”块检测灯是否由于温度过高而关闭。该简单的按位测试将明确灯是否打开。如果设为灯开位,说明灯打开,如果未设为灯开位,说明灯未打开。首次加电时,灯是默认打开的并设定灯开位。

  “警报”控制块控制着温度过高且LED灯被控制器关闭后的开关序列。接下来的“灯是否打开?”块将再次开始检测序列。退出报警条件的唯一途径就是断开并利用墙壁开关再次供电。

  接下来的“检测温度”块将检测NTC节点处的电压。NTC通常会随温度发生非线性变化,因此检测到的电压可根据对照表进行相关温度比较。该温度将用于后续两个控制块。

  “安全温度”块用于测定LED灯的温度是否在安全范围内。当温度达到配置的最大值时,系统会将灯关掉。若温度低于允许最大值,系统将继续进行温度稳定性测试。

  “关灯”块的作用是当LED灯温处于不安全范围时将灯关掉。接下来是“是否开灯?”块,再次重新开始检测序列。

  “温度变化”块用于测定上次流明调节循环以来的温度变化是否需要提升或降低光输出。“温度增加”块用于测定温度是升还是降。由于前一个控制块已经测出自上次流明调节循环以来的温度变化已足够大,因此这里只有两个选择。

  “最大流明”块用于测定LED灯是否设为最大流明输出。若流明输出达到最大值,则重新进入“是否开灯?”块,重新开始检测序列。

  当上一个控制块测出流明输出未达到最大值,便会触发“流明升高、调暗指示灯”块。该控制块会根据初始化块期间的配置将输出调高一级,还会将指示灯LED调低一级,以使流明增加与指示灯变暗相匹配,然后再重新启动检测序列。

  当“温度升高”块测出温度升高,便会触发“最低流明”块。若流明未达到预设的最低值,则流程导向“降低流明,调亮指示灯”块。若流明输出达到预设的最低值,则重新进入“是否开灯?”块,重新开始检测序列。

  “降低流明,调亮指示灯”块会根据初始化块期间的配置将输出调低一级,还会将指示灯LED调高一级,以使流明减少与指示灯增加相匹配,然后再重新启动检测序列。

  上述流程图显示了输入电源循环期间LED灯保持关闭的情况。流程稍作变动,就能提供灯关闭后监控温度、在温度降至安全限度内重新打开LED灯的序列。

关键字:LED照明  控制应用 编辑:探路者 引用地址:最新智能LED照明控制应用分析

上一篇:LED齿轮灯:独具匠心的照明设计理念
下一篇:解读2013年LED照明十大关键技术

推荐阅读最新更新时间:2023-10-12 22:26

OPC技术在监测控制系统中的应用
1 OPC技术的产生 OPC(OLE for Process Control)技术是对象链接和嵌入式技术在过程控制方面的应用,包含一系列工业自动化接口规范。该技术是为解决应用软件与各种设备驱动程序之间的通讯而提出的,它把硬件厂商和应用软件开发者分离开来,大大提高了双方的工作效率。 随着工业生产的不断发展,由于生产规模的扩大和过程复杂程度的提高,工业控制软件设计面临巨大挑战,即要集成数量和种类不断增多的现场信息。在传统的控制系统中,智能设备之间及智能设备与控制系统软件之间的信息共享是通过驱动程序实现的,不同厂家的设备使用不同的驱动程序,迫使工业控制软件中包含越来越多的底层通信模块;另外,由于相对特定应用的驱动程序一般不支持硬
[工业控制]
OPC技术在监测<font color='red'>控制</font>系统中的<font color='red'>应用</font>
透过检测认证看LED照明设计与元器件选型
  LED照明作为21世纪最有前途的高科技产业之一,产品的设计、研发、应用和检测认证备受关注。虽然LED产品的检测和认证是产品进入市场的最后一个环节,但是它对产品设计阶段有重要指导意义。合理的产品设计能增强产品可靠性、减少EMC问题,更快的通过产品检测和认证,为产品赢得市场和企业长远发展打下基础。   在近期举办的LED产业高峰论坛上,电子元件技术网访谈了聂鹏翔先生,分享了对目前LED市场发展的看法;电子产品检测和认证对产品质量的重要促进作用,以及产品设计和元器件选择对产品可靠性、失效分析和电磁兼容的深刻认识;能帮助工程师朋友重新审视可靠性分析和元器件选型的重要性,指导工程师从设计的源头减少EMC问题的产生,提高整机产
[电源管理]
32位微控制器MPC555在汽车电子中的设计与应用
随着汽车工业的飞速发展,汽车在控制、通信和网络方面的要求越来越复杂。以32位微控制器及嵌入式实时操作系统为基本技术特征的新一代电控单元ECU(Electronic Control Unit)成为汽车电子应用的主流。   32位微控制器MPC555以其强大的性能在汽车电子等领域得到了广泛的应用。 1、MPC555微控制器简介     MPC555 微控制器是Motorola PowerPC 500系列的代表产品,是专为汽车电子、航空航天、智能系统等高端嵌入式控制系统所设计。该产品可在高速移动及苛刻的环境下工作(工作温度:-40~125℃), 性能优良,并具有高度的灵活性和可靠性,适合大批量低成本生产。
[汽车电子]
关于改善LED照明节能问题
   LED照明 灯具的最大卖点就是节能,但往往市场上受限于产品的成本、材料,以及散热技术,使得节能这个诉求因为 光效 率的因素而有了折扣。节能目前主要体现在以下两个方面:   一、将 电能 最大限度的转化为光能;   二、将光能最大限度的控制到适合人的感官。   从现在 LED 应用领域所遇到的难题来看,上述两点显然做得不够好。首先是LED的“热”问题,既然存在散热问题,就说明LED的产热量是相当可观的。我们可以简单的分析一下LED的哪些难题与LED的产热有关:   1.既然LED的产热量高到能影响散热的角度,温度可见一般。关于 LED光源 封胶,什么样的材质能够承受长达数万小时的热烘烤?当然即便有这样优质
[电源管理]
东芝将为多功能一体机和打印机等电机控制应用提供新型微控制
东芝公司今天宣布,该公司已经为多功能一体机和打印机等设备的电机控制应用推出了基于ARM Cortex™-M4F内核的新TX04系列微控制器:“TMPM462F15FG”、“TMPM462F10FG”、“TMPM461F15FG”和 “TMPM461F10FG”。样品将从2013年11月开始提供, 预计到2014年春季开始批量生产。 开发多功能一体机和打印机等设备的尖端电机控制应用,要求微控制器拥有大容量闪存ROM、多个通信通道和内置高分辨率传感器的接口。 即将推出的新型微控制器最多可整合1.5Mbyte闪存ROM、193Kbyte SRAM、20个串行接口通道和1个20通道12位高分辨率模拟/数字转换器。这确保通过单个
[单片机]
基于汽车应用的高亮度LED控制成本效益的实现
高亮度LED(HBLED)在汽车、消费电子和工业市场正在快速普及。 色彩绚丽、寿命长、能源效率高,这些是高亮度LED成为照明应用未来发展趋势的部分原因。 在汽车行业,HBLED技术使车辆在造型、安全、燃油的经济性方面与众不同,从简单的开关照明、LCD背光到亮度极高的头灯应用都包括在内。但是,高效、可靠地控制HBLED的亮度,不是一件容易的事情;功率级效率,热设计和EMC是涉及HBLED的应用中最关键的设计难题。 通常情况下,使用专用恒定电流驱动器(CCD)来驱动HBLED串来解决大部分重要设计问题,并简化设计。不过,CCD通常比基于微控制器的解决方案更贵。本文介绍使用8位微控制器(MCU)和低成本的分离解决方案来实施智能HBL
[嵌入式]
艾比森荣获“2010年度中国LED照明应用百强企业”称号
    2011年1月13日,由中国建筑装饰与照明设计师联盟和《照明周刊》联合发起并主办的“中国LED照明应用百强企业“评选活动在深圳揭晓,深圳市艾比森光电股份有限公司荣获“中国LED照明应用百强企业”称号。     本次评选活动本着公开、公正、公平的原则,在全国范围内进行了为期2个月的“中国LED照明应用百强评价”推介活动,在全国室内设计师、照明设计师、装饰施工单位、照明工程施工单位领域对全国LED照明应用企业做了深入的市场应用检测调查,确定了中国LED照明应用百强企业。此次评选,是扶持行业标杆之举,百强荣誉是对优秀企业过去的总结和奖励。     艾比森LED光电股份有限公司,创立于2001年,主营LED全彩显示屏
[电源管理]
PID控制在柔性结构控制中的应用
  新一代大射电望远镜(LT)主要由悬索-馈源舱粗调系统和与馈源舱固连的精调 Stewart 平台子系统组成 。并联悬索-馈源舱子系统提供较大的馈源舱扫描工作空间,实现馈源舱轨迹跟踪的粗调;精调 Stewart 平台子系统在粗调基础上实现高精度轨迹跟踪。尽管采用精调平台能实现轨迹的精调,但轨迹精调是建立在悬索粗调的基础上的。因此,悬索的粗调就成为馈源舱轨迹跟踪精度能否达到要求的重要因素。由于轻型索驱动系统采用钢缆传动,钢缆的弹性变形、钢缆与轴之间的摩擦、以及钢缆松弛等一系列问题,使悬索-馈源舱系统是一个非线性慢时变大滞后柔性系统。常规 PID 控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制,而常规 PI
[嵌入式]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved