利用电荷泵降低白光LED背光驱动器的成本和体积

最新更新时间:2014-08-30来源: 互联网关键字:电荷泵  LED  驱动器 手机看文章 扫描二维码
随时随地手机看文章
  在手机和其他移动设备中,白光LED能为小尺寸彩屏提供完美的背光效果。但大部分手机使用单节锂电池供电,而单节锂电池很难直接驱动白光LED。通常锂电池的工作电压范围为3~4.2V,而白光LED的导通压降是 3.5~4.2V(20mA)。因此,锂电池电压降低后将无法直接驱动白光LED。 

  为了给白光LED提供足够的正向压降,可以使用基于电容的电荷泵或基于电感的升压电路。考虑到效率和电池寿命,基于电感的转换器可能是最好的选择,但是额外的电感会增加系统成本。而且,由于EMI和RF干扰,电感型升压电路需要仔细的设计和布板。与之相比,电荷泵解决方案具有价格便宜、易使用等优势,但效率较低,缩短了电池使用寿命。 

  随着电荷泵设计技术的改进,新型白光LED驱动芯片,如Maxim等公司的芯片,不但可以获得电感升压电路的效率(大约85%),而且可以保持传统电荷泵设计的简捷、低成本等优势。 

  分数电荷泵及其对效率的影响 

  第一代白光LED驱动电荷泵的基本架构是倍压或2x拓扑,2倍压电荷泵的工作效率为: 
  PLED/PIN=VLED×ILED/(2×VIN×ILED+Iq×VIN) 
  其中,Iq是电路的静态电流,因为Iq非常小,上式可近似等效为: 
  PLED/PIN≈VLED/(2VIN) 
  为了提高效率,第二代白光LED驱动电荷泵的输出不再是输入电压的整数倍。如果电池电压足够,LED驱动器将产生1.5倍压输出,1.5倍压电荷泵的转换效率为: 
  PLED/PIN=VLED×ILED/(1.5×VIN×ILED+Iq×VIN)≈VLED/(1.5VIN) 
  从上式可明显看出:1.5倍压电荷泵的效率显著提高了。假设电池电压为3.6V,LED电压为3.7V,效率从2倍压电荷泵的51%提高到69%。 
  第三代电荷泵引入的1倍压模式进一步提高了效率。当电池电压足够高时,通过一个低压差电流调节器直接将电池连接到LED,此时,效率可以通过下式表示。 
  PLED/PIN=VLED×ILED/(VIN×ILED+Iq×VIN)VLED/(VIN) 
  当电池电压足以驱动白光LED时,1倍压模式的效率超过90%。如果电池电压为4V,LED导通压降为3.7V,则效率可达92%。 
   
  在不同电池电压下获得最高效率 
  1倍压转换模式效率最高,但只能用于电池电压高于LED正向压降的情况下。为了获得最高效率,白光LED驱动器设计要求综合考虑电池和LED电压,当电池电压(或LED电压)改变时需要相应地改变驱动器的工作模式。但是,如果在电池电压较高时(而非必要的条件下)改变工作模式,开关损耗可能使电路进入低效率模式。当电池电压下降时,最好尽可能地使驱动器保持在高效模式(例如1倍压模式),对于功率开关而言,为了得到低损耗,芯片面积和成本都将提高。 

  为了保持1倍压模式能够工作在尽可能低的电池电压下,要尽可能降低1倍压模式调整管FET和电流调节器的压降。压降决定了串联损耗和所能维持的1倍压模式的最低输入电压。最小输入电压由下式表示: 
  VLED+Bypass PFET RDS(ON)×ILED+VDROPOUT 

  传统的正电荷泵白光LED解决方案采用PMOS FET作为旁路开关连接电池和LED,如图1所示。FET的导通电阻RDS(ON)大概是1~2Ω。更小的导通电阻将受限于芯片面积和成本。导通电阻越小,芯片面积越大,成本也越高。 

  当输入电压不足时,正压电荷泵产生1.5倍压或2×VIN的输出,用来驱动白光LED的阳极。为了在正压电荷泵中采用1倍压结构,我们必须使用一个内部开关旁路VIN和白光LED的阳极。当输入电压不足时,负压电荷泵能够产生-0.5VIN输出,驱动白光LED的阴极。工作在1倍压模式时,负压电荷泵结构不需要旁路-0.5VIN到地,因为电流调节器直接控制LED电流从VIN流入GND。由此扩展了1倍压模式的工作电压:VLED+VDROPOUT 

  图2显示了1倍压模式下负压电荷泵的电流路径,没有P沟道MOSFET旁路开关,WLED调节电流直接通过VIN流入GND。如果ILED总电流为100mA,P沟道MOSFET的导通电阻为2Ω,则旁路开关压降为200mV。因为锂电池主要工作在3.6~3.8V,对于典型的Li+电池放电曲线,200mV压差、1倍压模式的负压电荷泵可以显著提高效率。 
   
  在不同LED正向压降下获得最高效率 

  传统的1倍压/1.5倍压正电荷泵白光LED驱动器,LED的阳极连接在电荷泵的输出。如果LED不匹配,即每个LED的正向导通压降不同时,如果(VIN-VLED)不足以支持最大正向导通压降,则将驱动器切换到1.5倍压模式。这种情况下可能只有一个LED不能满足导通电压的要求,而电荷泵就必须放弃高效的1倍压模式。负压电荷泵则不同,可以通过多路开关分别选择1倍压模式或-0.5倍压模式。因此,如果某个LED需要较高压降,则不需要将所有通道转到-0.5倍压模式。例如,MAX8647/48驱动器,当输入电压不能驱动导通电压最高的LED时,仅仅打开需要负压电荷泵驱动的LED通道,其他LED仍然保持1倍压工作模式。独立的LED开关可以在不同时刻、不同VIN下切换到-0.5倍压工作模式。 

  
  结论 

  负压电荷泵白光LED驱动器能够分别切换各个通道的工作模式,与1倍压/1.5倍压正电荷泵LED驱动方案相比,显著提高了工作效率,如图3所示。

关键字:电荷泵  LED  驱动器 编辑:探路者 引用地址:利用电荷泵降低白光LED背光驱动器的成本和体积

上一篇:中功率配合光学设计LED背光源极佳解决方案
下一篇:勿要混淆 详解LED LED背光 OLED的原理与区别

推荐阅读最新更新时间:2023-10-12 22:44

LED驱动电源可靠性和能效关键测试项目
 近几年LED作为新型节能光源在全球和中国都赢得得了很高的投资热情和极大关注,并由户外向室内照明应用市场渗透,中国也涌现出大大小小上万家LED照明企业。让LED照明大放异彩的最主要原因正是其宣扬的具有节能、环保、长寿命、易控制、免维护等特点。   然而颇具讽刺意味的是,我们常常听闻由于LED驱动电源本身的寿命直接拖累LED照明灯具变得并不“长寿”,极大地增加了维护/使用成本;或者驱动电源的效率不高导致LED照明灯具的能效转换比并不是想象中那么高,或者由于输出电流纹波没有得到很好的控制影响了发光品质,使得LED照明的绿色节能优势大打折扣,甚至影响了市场普及。   因此,LED产业链的完善和成熟,驱动电源也是其中重要的一环
[电源管理]
<font color='red'>LED</font>驱动电源可靠性和能效关键测试项目
LED照明行业突出优点及广泛的用途
       高亮度LED的出现具有划时代意义,它将是人类继爱迪生发明白炽灯泡之后最伟大的发明之一。最早研制的LED只能发出红色的光,用于电子设备中的指示灯。如今,LED已能发出红色、黄色、蓝色、绿色、橙色、琥珀色、蓝绿双色、红绿双色、黄绿色、纯绿色、翠绿色、白色各种光束。在我国各大城市,已经到处可见LED的眩目光彩,LED正在改变我们的生活和工作环境。   半导体技术在引发微电子革命之后,正在孕育一场新的产业革命——照明革命。LED已成为信息时代的闪亮标志,将逐步取代白炽灯和荧光灯等传统照明技术。   突出的优点、广泛的用途   到过美国纽约时代广场的人也许不会忘记,高高在上的可口可乐广告画面清晰,色彩鲜艳,栩栩如生
[电源管理]
三星将对QLED电视采用新技术工艺
据韩国Digital Daily报道,三星电子将在2019年对基于量子点(QD)的QLED电视结构进行全面改造,并计划于2019年推出基于QDG(QD on Glass)的QLED电视。   报道称,需要用玻璃替代量子点增强膜(QDEF)来生产背光模块的导光板,并指出新的QDoG工艺将更具成本竞争力,同时还有助于减少电视产品的厚度。   新工艺将引发QDEF供应链发生重大变化。目前,三星将QDEF的生产外包给Hansol Chemical,在进入导光板生产之前,QDEF将由韩国的MNtech和Glotec进一步加工。   报道称,通过转换至QDoG工艺,三星可能会从旭硝子(Asashi Glass)和康宁(Corning)处采购基
[家用电子]
闪存仍太贵 消费电子产品增长将推动硬盘猛增
10月12日消息,据外电报道,专业人士近日指出,虽然遇到闪存这类竞争性技术的挑战,但在2010年之前,硬盘驱动器将仍然是不断增长的消费者电子产品的关键组件。 In-State公司近日发表研究报告称,随着消费者用电子产品继续成为增长速度最快的应用之一,全球硬盘驱动器出货数量将从2005年的3.8亿台增至2010年的7.48亿台,In-State公司分析师Ehier说:尽管硬盘驱动器已经小到足以装进绝大多数便携消费者电子设备,但竞争性储存解决方案,比如日益增长的闪存能力,在继续威胁硬盘市场。 然而,闪存已经成为大储存能力的成本制约,硬盘驱动器可以更有效地用于便携多媒体设备,因为它可以提供性能价格比更高的储存能力。 In-State
[焦点新闻]
利用高调光比LED驱动器设计大功率照明方案
  LED照明解决方案广受欢迎的原因之一,是LED能通过简单的电流控制来获得很宽的调光范围,比如汽车仪表盘和飞机驾驶员座舱等环境照度可能非常低的应用场合就需要非常宽的PWM调光范围。凌力尔特公司的LT3478和LT3478-1是单芯片升压型DC/DC转换器,能在很宽的可设置范围内利用恒定电流来驱动高亮度LED。除了可选的10:1模拟调光范围之外,LT3478和LT3478-1还具有3000:1的PWM调光范围,可以保持LED的色彩。   LT3478和LT3478-1的易用性很好,并具有旨在优化性能、可靠性、外形尺寸和总成本的可编程功能。这些器件可工作在升压、降压和降升压型LED驱动器拓扑结构中。它们所能提供的LED电流大小
[电源管理]
利用高调光比<font color='red'>LED</font><font color='red'>驱动器</font>设计大功率照明方案
MSP430F149控制LED灯的亮灭C程序
MSP430单片机第一个程序控制P1.0口LED灯亮灭C语言程序,编程环境:IAR 6.0;MCU:MSP430F149;程序有详细注释,很适合初学者。 #include msp430x14x.h typedef unsigned int uint; typedef unsigned char uchar; /*延时函数*/ void Delay_Ms(uint x) { uint i; while(x--)for(i=0;i 250;i++); } /*主函数*/ int main( void ) { WDTCTL = WDTPW + WDTHOLD;//
[单片机]
如何降低LED照明开关电源待机功耗
与普通光源相比, LED 灯具有效率高、环保和使用寿命长的特性,因而它们正在成为降低室内和外部照明能耗的主选解决方案。设计用于照明供电的开关电源也应该具有高效率,以便顺应LED灯的节能特性。除了在正常工作过程中具有高功率转换效率之外,开关电源的待机功耗也成为LED业界的普遍关注焦点。在不远的将来,待机功耗有望调整到1W甚至300mW以下。然而,在 LED照明 应用中,专用于待机电源的辅助功率级并不适用,主要是因为照明应用在工作期间不存在待机条件。但是,为灯泡供电的开关电源即便在没有灯或者灯已损坏的条件下仍然与电网连接并吸取能量。这是在照明应用中关心待机功率水平的主要原因。   在空的办公楼中,待机功耗特性不良的照明系统是不环保的,
[电源管理]
如何降低<font color='red'>LED</font>照明开关电源待机功耗
基于PAM2842的LED照明系统的设计
太阳能灯具均由5个部分组成:太阳能电池、蓄电池、控制装置、LED的驱动芯片以及LED本身。通常太阳能电池板挂在高杆上,充放电控制器和铅蓄电池放在地面的控制箱内,驱动芯片和LED都装在灯头里(如图1所示)。其中充放电控制器只能控制对蓄电池的充电和放电过程以及定时向LED供电,并不能稳定其输出电压。但是,有不少设计人员在设计中略去了恒流驱动,他们以为铅蓄电池的输出电压足够稳定,不需要再采用恒流驱动就可以直接驱动LED,这种想法是错误的。 图1 太阳能灯具的5个组成部分 蓄电池的输出电压会随着放电而逐渐降低,在整个放电过程中,其输出电压的变化高达20%左右。如果用它直接对LED供电,会使得LED的亮度产生很大
[电源管理]
热门资源推荐
热门放大器推荐
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved