如何设计LED标牌和LED矩阵显示屏

最新更新时间:2014-11-23来源: 互联网关键字:LED标牌  LED矩阵  显示屏 手机看文章 扫描二维码
随时随地手机看文章

  引言

  基于LED的标牌和矩阵显示屏为不断增长的室内外应用带来了更多的功能以及绚丽夺目的视觉效果。LED技术的最新发展使人们很难分辨出自己看到的到底是其高质量显示屏的静止画面,还是传统的打印或绘制广告牌。本教程将详细介绍LED显示屏系统的基本技术原理,以及使用分立LED灯泡阵列设计它们需要考虑的设计问题。

  LED 驱动基础

  首先,我们要对比不同的LED驱动电路,以确定最佳方案。

  连接电压源

  众所周知,LED 灯(或二极管)在具有足够正向电压(VF)时开始导通。导通时其正向电流通常会发光。根据这个基本知识可以得出图1a中的第一种选项,不过这样行不通。因为 LED 电流是其电压偏置的指数函数(公式1),LED 灯的光强度对该电压非常敏感。大多数情况下,大电流条件通常会将原本长寿命的LED变成昂贵的闪光灯泡。

  

 

  下面是图1a行不通的原因所在。在公式1中,IS、RS是常数,取决于LED产品本身,与VT是热电压无关。假设串联电阻RS是理想值零,那么仅0.1V的VF变化就会产生47倍的ILED差异。

  

 

  例如,20mA的目标LED电流值在其偏置电流出现仅0.1V的差异时就会跳变至1A。即使考虑实际RS值,真实LED器件在具有0.1V偏置差异时仍会出现10至20倍的差异。

  

 

  图 1.对比三种LED驱动电路

  支持流限电阻器的电压源

  现在我们来看看图1b。添加一个限流电阻器RLIMIT来保护LED灯。由于有限流电阻器,因此该灯不会被烧坏。在视频显示器应用领域,这种方法在控制LED光强度方面仍然不够好。LED曲线和RLIMIT产生的负载曲线可决定其LED电流值。如红色或蓝色标记所示,该LED和电阻器分别存在制造误差造成的正向电压变化及电阻变化。这些误差因素会使LED电流(绿)产生不可忽视的变化。

  恒流源

  图1c采用恒流电路而非电阻器。该恒流驱动器电路可直接将LED电流调节为目标值。无论LED灯在制造过程中会产生多少VF变化,LED都会传导特定的电流值。LED灯的光强度与通过 PN 结点的电荷紧密相关,因此该恒流驱动器是从LED灯获得统一光输出的理想方法。

  此外,我们都知道集成电路(IC)可提供良好的匹配电路对。这也是选择恒流法的另一个优势。图2是LED驱动器的基本输出级结构。市场上很多LED驱动器IC都有参考电流设置端 IREF,该参考电流是镜像到其输出端的恒流。

  

 

  图 2. LED 驱动器IC的基本输出配置

  图2是该讨论的结果,即LED驱动器的基本输出电路配置。

  色彩驱动

  到目前为止,我们已经能够确定如何驱动单个LED灯了。下一步是为视频显示系统实现全色彩光输出。通过组合光的不同深浅红绿蓝三原色(RGB),任何色彩都可生成。较为熟悉的示例是采用个人计算机(PC)上的色彩选择工具。

  数字或模拟的灰阶控制

  PC 操作系统将三种色彩混合为256个色阶(每阶8个二进制位)或更多,以显示全彩色像素。对于LED显示系统而言,也需要采用相同概念的色阶色彩强度控制,以便在LED驱动器设计中实现色阶控制或灰阶控制。

  首先应决定使用数字控制还是模拟控制。前面已经介绍过,经过 PN 结点的总电荷数可决定光强度,因此数字和模拟方法均可控制光强度。图3是数字和模拟法中的50%灰阶控制。在总体256个色阶的示例中,该50%表明了一个有128个灰阶的目标。

  

 

  图 3.数字和模拟的50%强度控制

  LED 电流与色彩变化

  这时候,需要考虑电流变化对LED光输出波长值的影响。改变波长就意味着改变人眼看到的色彩。图4是绿色LED灯的实例。通常在业界,510nm 广泛代表绿色。因此,大部分LED灯制造商所设计的LED灯产品在最大额定电流下都具备510nm的波长。在图4中,随着LED电流的升高,波长可达到510nm。获得绿色的最佳方法是尽量使灯的驱动电流接近最大额定值。这也就说明了为什么使用数字控制比使用模拟控制好。

  选择数字控制的另一个优势是便于以数字电路模块的形式对LED驱动器IC实施控制。对于256阶的灰阶控制而言,数字控制的成本比模拟控制低。

  

 

  图 4.绿色LED电流与波长实例

  这种ON/OFF 数字控制称之为脉宽调制(PWM)控制,或者PWM调光。现将PWM控制开关添加至图2。

  如何构成矩阵或2D图像

  RGB LED灯可平铺构成2维(2D)影像。  显示系统结构

  RGB LED灯可用于构成正方形的基础结构或模块。它通常包含一块PCB以及一个16×16至64×64的像素阵列,不同的应用有所不同。可将多个模块组合在一起,构成机械系统结构或面板。LED显示系统厂商通常提供各种面板。每个面板都有机械框架,可放置多个模块。它包含一个或多个控制单元,用以提供电源分配、数据接口和处理器。在构建体育场大屏幕或路边广告牌等显示系统的现场,可安装多块面板构成最终显示屏。在施工现场,每块面板的所有数据线和电源线都会集中在中央控制单元。

  

 

  图 5.LED 显示系统由模块/面板/显示屏组成

  像素间距

  一套LED显示系统包含大量的LED灯和一个大电源。设计系统时需要重点考虑LED灯的密度优化问题。LED 灯的该密度称为每个像素的距离或像素间距。如果像素间距太密,一旦超出了人眼能识别的精度,它就不会改善影像输出质量,而且会增加成本。人眼可识别的两个单光源是在这两点形成1个弧度的1/60(=1 弧分)时。

  

 

  图 6.人眼可识别的分辨率

  图6是如何计算人眼可分辨像素间距Dpp1。如公式3所示,其中L为视距。

  

 

  在最佳实践中,DPP1可视为过大,对于高质量视频系统而言三倍Dpp1就够好了。在公式4中,DPP是指导标准。

  

 

  公式4 的简单记忆方法是:

  所需的像素间距(毫米:mm)=“视距”(米:m)

  例如,5m视距的系统需要5mm像素间距来实现良好分辨率。另一个视觉实例如图7所示,图中展示了过低像素间距如何降低输出影像质量。像素间距为12.5mm 的影像(上)看起来很粗糙,无法近距离辨识。但保持一定的距离观看时影像开始变得清晰,与观看像素间距为5mm的影像(下)类似。这个实例清楚地说明了视距与像素间距的关系。

  

 

  图 7.不同像素间距与视距的对比

  静态驱动器与时分复用驱动器

  从图2可以看出,LED灯的阴极采用当前市场常见的LED驱动器IC驱动。这里要讨论LED灯的阳极驱动器电路。阴极采用恒流驱动器有优势,阳极希望也只提供足够的电压。但仍需做出如何驱动阳极的重要决定!

  图8 对比了静态阳极驱动器系统与时分复用阳极驱动器系统。静态阳极驱动器配置十分明确:一个LED驱动器IC驱动一个LED。在设计具有大量像素点的系统时,静态阳极驱动器需要大量LED驱动器IC。相反,时分复用阳极驱动器系统让多个LED灯共享一个IC,因而使用的LED驱动器IC数量较少。时分复用驱动器的权衡在于输出LED光强度会因分时而降低。

  在户外显示系统中,需要极强的LED输出来克服太阳光亮度,以便人眼能看清楚影像。在这种户外系统中,更适合选用静态阳极驱动器。另一方面,在室内系统中,时分复用阳极驱动器则是降低系统构建成本的好方法。

  时分复用已经成了当前应用最常用的技术,因此我们将将其用于本文剩余部分讨论的应用中。

  

 

  图 8.静态阳极驱动器与时分复用阳极驱动器  如何创建电影/视频影像

  之前我们探讨了如何显示静态影像。如果我们不断变化静态影像,就可将其变为电影或视频。

  帧速率/帧刷新率

  老式模拟电视通常在一秒钟内显示24张不同的静态影像,帧速率为24。

  当模拟电视摄像机拍摄另一个模拟电视屏幕时,可产生由视频影像与黑色条带构成的斑马纹混合画面(图9)。这种现象由同步电视摄像机和电视屏幕扫描率引起。在拍摄LED屏幕的摄像机采用时分复用阳极驱动器时,也会出现相同的问题。应用实例包括使用电视摄像机拍摄背景墙壁上由LED显示器放大演员的舞台影像或者用电视摄像机拍摄体育场中体育赛事比分牌或标牌等。要避免这个问题,LED显示器现在需要比摄像机系统运行得更快,特别是在专用LED显示器市场。

  

 

  图 9. 电视摄像机拍摄另一个电视屏幕引起的黑色条带

  为满足更快运行这一要求,很多LED显示系统都在一个帧周期内反复显示相同的影像,称为帧刷新率。图10是帧速率与刷新率的关系。只有两张帧影像:A 和 B。每个帧重复“影像 x”两次。因而本实例“帧刷新率”= 2 ד帧速率”。

  

 

  图 10.帧速率与帧刷新率

  在普通LED显示系统中,帧速率在50Hz至120Hz的范围内,而帧刷新率则介于50Hz至2kHz之间。

  ON/OFF 控制驱动器或 PWM 控制驱动器

  为了满足系统帧速率与刷新率的需求,需要在实施逻辑电路的两种方法中做出选择。第一种是ON/OFF控制驱动器,而第二种则是PWM控制驱动器。

  图11a是采用ON/OFF控制IC的系统,具有每个位对应于一个输出的ON/OFF寄存器。寄存器位的逻辑高可打开对应的输出,而逻辑低则可将其关闭。

  图11b是采用PWM控制IC的系统,具有一个可参考时钟计数器的灰阶参考时钟输入端。另外,该IC还具有一组保存灰阶逻辑代码的寄存器。PWM 比较器可通过计数器和灰阶 (GS)寄存器比较和生成PWM输出模式。

  对于这两种类型的驱动器IC而言,两种工作都是并列执行的:

  - 恒流驱动器模块根据当前显示周期数据的输入驱动其LED灯阵列;

  - 并将下一个显示周期的数据接收在移位寄存器中。

  

 

  

 

  图 11.采用ON/OFF控制IC和PWM控制IC的LED显示系统

  总结

  首先介绍单个LED灯的驱动器电路,再讨论详细的LED灯物理特性、显示系统的物理布局与结构以及静态及时分复用控制,进而得出完整的LED驱动器IC结构。

  在第2部分,我们将介绍影像处理控制器IC与LED驱动器IC之间的数据传送,并举出实例。另外还将探讨与LED显示驱动器IC有关的特性主题。

关键字:LED标牌  LED矩阵  显示屏 编辑:探路者 引用地址:如何设计LED标牌和LED矩阵显示屏

上一篇:基于FPGA的LCD显示远程更新
下一篇:提高LED灯具散热水平的几点建议

推荐阅读最新更新时间:2023-10-12 22:49

如何为OLED显示屏选择制定电源供应解决方案
    本文将讨论各种OLED技术和适当的偏压电源供应电路,而关于OLED技术和驱动方法的选择,也会影响电源供应电路的需求。工程师所面临的挑战为如何选择最适当的电源供应电路,以便支持电池供电型可携式装置,以及特定OLED显示器的需求。功能先进的显示器渐成为现今消费电子产品的重要特色,这些新型显示器所发挥的作用,通常会强化使用者对于整体产品的印象,而这样的印象最终会决定该产品在 市场上会多成功。使用者在面对行动电话和口袋型计算机时,对新型显示器的印象尤为重要,因为高分辨率彩色屏幕已成为这些产品的必备功能。随LED小编快来了解一下吧。   多种新型显示技术正扩大其市场占有率,包括新出现的OLED显示器在内,它们拥有超高的对比值、快速的
[电源管理]
操作LED电子显示屏注意事项
目前,随着中国led显示屏发展产业不断增加,在各大城市街头巷尾的LED大屏幕显示屏慢慢多起来了,人们消费水平也日益增长,LED照明已逐步运用到家庭的日常生活当中,LED电子显示屏不但提升了城市形象,LED还丰富人们的文化生活,在这方面可以体现了LED产业的发展速度是如此快,在我们享受LED电子屏带来经济效益的同时,一些拥有LED电子显示屏的商家并未完全懂得LED电子屏操作和使用注意事项,以导致缩短LED电子显示屏的寿命.在此,艾斯威公司资深的专业人士向我们解析LED电子显示屏操作和使用注意事项,以确保LED显示屏系统安全、正常地运行!    一、 开关LED电子显示屏注意事项:    1 开关顺序:   开屏
[电源管理]
基于单片机的LED显示屏控制系统设计
本设计使用双RAM技术来组织用于控制矩形 显示屏 的控制系统数据,提高了信息垂直循环 显示 时的存储器效率,大幅度降低了对数据存储器的占用率,并且对刷新频率的要求也不是很高。   1、 led显示 数据组织   需要显示的区域小于或等于实际显示区域时,采用静态显示即可。但大多时候需要显示的区域大于或等于实际显示区域,如图1所示。为了简化问题的分析,本文将显示区域高度设置为 LED显示屏 高度的4倍,宽度等于LED显示屏宽度。设显示屏的高度为Lh,宽度为Lw,则显示区域高度Dh=4Lh,宽度Dw=Lw。本文以单色显示作为描述对象,且Bw=Bn=8(Bw为扫描线条数,Bn为输出数据宽度),如图1所示。
[电源管理]
基于单片机的<font color='red'>LED</font><font color='red'>显示屏</font>控制系统设计
品锐电子推出全彩显示屏逐点校正方案
深圳市品锐电子有限公司在提升LED显示屏的品质和降低显示屏成本方面,进行了有益的探索和尝试,初步取得了一些成效。目前,已经完成了LED 显示屏的逐点校正和灰度控制驱动芯片、测试设备、控制系统的研发和生产,并申请了多项国家发明和实用新型专利,为提高LED显示屏的品质,提供了一套可行的方案。   在广州国际LED展会上,品锐电子向业界推出了针对室内全彩色显示屏的方案。借助于品锐电子的逐点校正技术,全彩色显示屏的品质和成本将会发生一个质的变化。采用逐点校正技术,可以将显示屏的亮度的一致性提高一个数量等级。该方案由以下几个部分组成:   1.内置256级灰度控制和亮度校正的16位恒流驱动芯片MW8258
[家用电子]
品锐电子推出全彩<font color='red'>显示屏</font>逐点校正方案
探索LED显示屏光污染的解决方案
  目前国际上一般把 LED显示屏 光污染分成3类,即白亮污染、人工白昼和彩光污染。而目前我国只对白亮污染中的玻璃幕墙有相关规定,对人工白昼和彩光污染目前还没有相关规定。但是考虑到彩光污染的确造成了人们感觉不适,所以在设计 LED 显示屏幕时需考虑到显示屏幕光污染防治的问题。   一、采用可系统自动调节的亮度调节系统   我们知道白天和夜晚,不同的时间和地点环境的亮度变化极大,如果LED显示屏的播放亮度大于环境亮度60%我们就明显感觉眼睛的不适应,也就是说造成了对人的光污染。通过户外亮度采集系统,随时的对环境亮度采集。显示平控制系统通过接收系统数据通过软件自动换算适合环境的播出亮度。   二、多级灰
[电源管理]
AMOLED显示屏应用前景
  传闻苹果的新一代iPhone将采用AMOLED显示屏。不只如此,目前许多智能手机都已经或预计使用AMOLED显示器。究竟AMOLED的技术有哪些优势?智能手机为何都钟情AMOLED?以下报导或许可以找到一些端倪。   一般来说,OLED又分为主动矩阵(AMOLED)与被动矩阵(PMOLED)两种,PMOLED具备省电的优点,但反应较慢,这样的特性适合照明应用,因此逐渐向照明领域发展;AMOLED则因为反应快速,非常适合应用于显示装置,因而被视为是未来取代液晶面板的不二人选。   AMOLED与传统液晶面板相较之下,色域更宽,已可达100%的NTSC色域;对比较高,是目前TN面板的十倍;视角较广,甚至
[电源管理]
AMOLED<font color='red'>显示屏</font>应用前景
量子点显示屏或将成主流
  美国、韩国和比利时的科学家将携手研发基于量子点发光二极管(QLED)的有源矩阵显示屏。与目前的显示屏相比,新显示屏在大大提高了亮度和画面鲜艳度的同时,还减少了能耗。   这种技术中用到的量子点(Quantum Dots)是一些肉眼无法看到的、极其微小的半导体纳米晶体,晶体中的颗粒直径不足10纳米。量子点由锌、镉、硒和硫原子组合而成。量子点有一个与众不同的特性:当受到电或者光(诸如LED产生的光)的刺激时就会发光,产生亮光和纯色,其发出的光线颜色由量子点的组成材料和大小、形状所决定。   美国QD Vision公司首席技术官赛斯·科-沙利文表示,该产品能够进行商业化生产并能同有机发光显示屏(OLED)相竞争。他解释
[半导体设计/制造]
德州仪器处理器显著提升车载显示屏的图形性能与集成度
TMS470 MCU、OMAP 处理器与达芬奇技术紧密结合 充分满足高性能 LCD 与 TFT 显示屏的需求 2006 年 10 月 20 日,北京讯 日前,德州仪器 (TI) 宣布推出 32 位 TMS470 MCU 平台的扩展版本。新版本将为仪表板主机控制器应用提供了全新器件,以充分满足客户对车载仪表板系统日益增长的性能要求。从增强型车辆诊断、辅助倒车摄像头 (rear park assist camera) 等驾驶员辅助功能,到数字媒体与全实时导航系统,随着时下车辆信息掌控量的不断加大,对更高图形性能与集成度的显示屏的需求就愈加迫切。为了解决这一技术难题,全新 TM
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved